

Technische Daten Inbetriebnahme

GPS170LCD-MP

Mit Windows Programm GPSMON32

Impressum

Meinberg Funkuhren GmbH & Co. KG Lange Wand 9 D-31812 Bad Pyrmont

Telefon: +49 (0) 52 81 / 9309-0 Telefax: +49 (0) 52 81 / 9309-30

Internet: http://www.meinberg.de
Email: info@meinberg.de

05. Juni 2007

Inhaltsübersicht

Impressum2
Allgemeines
Komplettsystem GPS170LCD-MP
Eigenschaften der Satellitenfunkuhr GPS1709
Zeitzone und Sommer-/Winterzeit
Impuls- und Frequenzausgänge (F_SYNTH optional) 10
Time Capture Eingänge
Serielle Schnittstellen (4x COM optional)
DCF77 Emulation
Programmierbare Pulsausgänge (optional)
Time Code Ausgänge (optional)
Allgemeines
IInstallation
Spannungsversorgung
Antennenmontage
Kurzschluß auf der Antennenleitung
Antennenmontage mit CN-UB/E (optional)
Einschalten des Systems
Bedienelemente der Frontplatte
FAIL LED
LOCK LED
LC Display
Taste MENU
Taste CLR/ACK
Taste NEXT
Taste INC 19

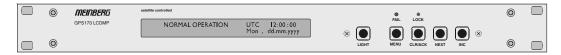
Die Menüs im Einzelnen
Hauptmenü19
Menü RECEIVER POS
Menü SV CONSTELLATION21
Menü SV POSITION
Menü USER CAPTURE
Menü SETUP22
SETUP FREQUENCY OUTPUT (optional)23
SETUP ENABLE OUTPUTS24
SETUP TIME ZONE24
SETUP DAYLIGHT SAV ON/OFF25
SETUP SERIAL PORT PARM (4x optional)26
SETUP SERIAL STRING TYPE27
SETUP SERIAL STRING MODE28
SETUP SERIAL STRING MODE20
SETUP POUT X (optional)
SETUP POUT X (optional)
SETUP POUT X (optional)
SETUP POUT X (optional)
SETUP POUT X (optional) 28 Mode 28 Timer mode 29 Single Pulse 29
SETUP POUT X (optional) 28 Mode 28 Timer mode 29 Single Pulse 29 Cyclic mode 30
SETUP POUT X (optional) 28 Mode 28 Timer mode 29 Single Pulse 29 Cyclic mode 30 PPS, PPM, PPH modes 30
SETUP POUT X (optional)
SETUP POUT X (optional) 28 Mode 28 Timer mode 29 Single Pulse 29 Cyclic mode 30 PPS, PPM, PPH modes 30 Kurzübersicht der prog. Pulsausgänge 31 SETUP TIMECODE SETTINGS (optional) 32 SETUP INITIAL POSITION 32 SETUP INITIAL TIME 33 INIT USER PARMS 33

Standardparameter wiederherstellen
Update der System-Software
Nur Service-/Fachpersonal: Austausch der Lithium-Batterie 36
Technische Daten GPS170
Oszillatorspezifikationen
Technische Daten GPS170 Antenne
Zeittelegramme
Format des Meinberg Standard Zeittelegramms 42
Format des Meinberg Capture Telegramms43
Format des SAT Zeittelegramms
Format des Telegramms Uni Erlangen (NTP) 45
Format des NMEA 0183 Telegramms (RMC) 47
Format des ABB SPA Zeittelegramms 48
Format des Computime Zeittelegramms 49
Time code (optional)
Funktionsweise
Blockschaltbild Generierung des Time codes 50
IRIG Standardformat
AFNOR Standardformat
Belegung des CF Segmentes beim IEEE1344 Code 53
Generierte Zeitcodes
Auswahl des generierten Zeitcodes 54
Ausgänge55
AM-Ausgang55
PWM-Ausgänge55
Technische Daten
Signale an der Steckerleiste Baugruppe GPS170 56
Steckerbelegung Baugruppe GPS17057
Kurzübersicht GPS170LCD-MP Bedienung

Technischer Anhang
Technische Daten GPS170LCD-MP
Rückwandanschlüsse
CE-Kennzeichnung 60
Rückansicht GPS170LCD-MP
Belegung der SUB-D-Buchsen
Anschlußschema Error Relais (Time Sync)
Technische Daten Netzgerät T-60B
Das Programm GPSMON32
Serielle Verbindung
Netzwerkverbindung
Starten der online Hilfedatei
Diskette mit Windows Software GPSMON32 67

Allgemeines

Die Satellitenfunkuhr GPS170 wurde mit dem Ziel entwickelt, Anwendern eine hochgenaue Zeit- und Frequenzreferenz zur Verfügung zu stellen. Hohe Genauigkeit und die Möglichkeit des weltweiten Einsatzes rund um die Uhr sind die Haupteigenschaften dieses Systems, welches seine Zeitinformationen von den Satelliten des Global Positioning System empfängt.


Das Global Positioning System (GPS) ist ein satellitengestütztes System zur Radioortung, Navigation und Zeitübertragung. Dieses System wurde vom Verteidigungsministerium der USA (US Departement Of Defense) installiert und arbeitet mit zwei Genauigkeitsklassen: den Standard Positioning Services (SPS) und den Precise Positioning Services (PPS). Die Struktur der gesendeten Daten des SPS ist veröffentlicht und der Empfang zur allgemeinen Nutzung freigegeben worden, während die Zeitund Navigationsdaten des noch genaueren PPS verschlüsselt gesendet werden und daher nur bestimmten (meist militärischen) Anwendern zugänglich sind.

Das Prinzip der Orts- und Zeitbestimmung mit Hilfe eines GPS-Empfängers beruht auf einer möglichst genauen Messung der Signallaufzeit von den einzelnen Satelliten zum Empfänger. 21 aktive GPS-Satelliten und mehrere Reservesatelliten umkreisen die Erde auf sechs Orbitalbahnen in 20000 km Höhe einmal in ca. 12 Stunden. Dadurch wird sichergestellt, daß zu jeder Zeit an jedem Punkt der Erde mindestens vier Satelliten in Sicht sind. Vier Satelliten müssen zugleich zu empfangen sein, damit der Empfänger seine Position im Raum (x, y, z) und die Abweichung seiner Uhr von der GPS-Systemzeit ermitteln kann. Kontrollstationen auf der Erde vermessen die Bahnen der Satelliten und registrieren die Abweichungen der an Bord mitgeführten Atomuhren von der GPS-Systemzeit. Die ermittelten Daten werden zu den Satelliten hinaufgefunkt und als Navigationsdaten von den Satelliten zur Erde gesendet.

Die hochpräzisen Bahndaten der Satelliten, genannt Ephemeriden, werden benötigt, damit der Empfänger zu jeder Zeit die genaue Position der Satelliten im Raum berechnen kann. Ein Satz Bahndaten mit reduzierter Genauigkeit wird Almanach genannt. Mit Hilfe der Almanachs berechnet der Empfänger bei ungefähr bekannter Position und Zeit, welche der Satelliten vom Standort aus über dem Horizont sichtbar sind. Jeder der Satelliten sendet seine eigenen Ephemeriden sowie die Almanachs aller existierender Satelliten aus.

Komplettsystem GPS170LCD-MP

Das System GPS170LCD-MP besteht aus der Satellitenfunkuhr GPS170 und dem Netzteil Mean Well T-60B, betriebsbereit in einem 19" Einschub MULTIPAC der Fa. Schroff montiert. Die Schnittstellen sowie die Ein-/Ausgangssignale der Baugruppe GPS170 sind an der Rückwand des Systems über Steckverbinder herausgeführt. Die einzelnen Baugruppen werden nachfolgend beschrieben.

Frontansicht GPS170LCD im 19'' Einschub MULTIPAC

Eigenschaften der Satellitenfunkuhr GPS170

Die Frontplatte enthält als Bedienelemente ein zweizeiliges LC-Display, zwei Kontroll-LEDs und fünf Taster. Die Antennen-/Konvertereinheit ist mit dem Empfänger durch ein 50 Ohm-Koaxialkabel verbunden. Die maximale Kabellänge ist abhängig vom verwendeten Kabel und im Abschnitt "Antennenmontage" angegeben. Die Speisung der Antennen-/Konvertereinheit erfolgt galvanisch getrennt über das Antennenkabel. Als Option ist ein Antennenverteiler lieferbar, der es ermöglicht, bis zu 4 Empfänger an einer einzigen Antenne zu betreiben.

Die GPS170 arbeitet mit dem "Standard Positioning Service". Der Datenstrom von den Satelliten wird durch den Mikroprozessor des Systems decodiert. Durch Auswertung der Daten kann die GPS-Systemzeit hochgenau reproduziert werden. Unterschiedliche Laufzeiten der Signale von den Satelliten zum Empfänger werden durch Bestimmung der Empfängerposition automatisch kompensiert. Durch Nachführung des Hauptoszillators (Oven Controlled Xtal Oscillator; OCXO) wird eine hohe Frequenzgenauigkeit erreicht (siehe Technische Daten). Gleichzeitig wird die alterungsbedingte Drift des Quarzes kompensiert. Der aktuelle Korrekturwert für den Oszillator wird in einem nichtflüchtigen Speicher (EEPROM) des Systems abgelegt.

Die GPS170 verfügt über verschiedene optionale Ausgänge, wie z.B. drei programmierbare Pulse, Time code moduliert / unmoduliert und bis zu vier RS232 Schnittstellen, die hardwaremäßig freigeschaltet werden können. Zusätzlich besteht die Möglichkeit die GPS170 mit unterschiedlichen Oszillatortypen (z.B. OCXO- LQ / MQ / HQ / DHQ oder einem abgesetzten Rubidium) zu bestücken, um die Uhr an die geforderten Genauigkeitsklassen anzupassen.

Durch zweimaliges Drücken der Taste "NEXT" aus dem Hauptmenü heraus kann die hard- und softwaremäßige Konfiguration der Uhr abgelesen werden.

Zeitzone und Sommer-/Winterzeit

Die GPS-Systemzeit ist eine lineare Zeitskala, die bei Inbetriebnahme des Satellitensystems im Jahre 1980 mit der internationalen Zeitskala UTC (Universal Time Coordinated) gleichgesetzt wurde. Seit dieser Zeit wurden jedoch in der UTC-Zeit mehrfach Schaltsekunden eingefügt, um die UTC-Zeit der Änderung der Erddrehung anzupassen. Aus diesem Grund unterscheidet sich heute die GPS-Systemzeit um eine ganze Anzahl Sekunden von der UTC-Zeit. Die Anzahl der Differenzsekunden ist jedoch im Datenstrom der Satelliten enthalten, so daß der Empfänger intern synchron zur internationalen Zeitskala UTC läuft.

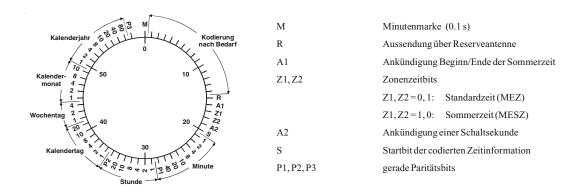
Der Mikroprozessor des Empfängers leitet aus der UTC-Zeit eine beliebige Zeitzone ab und kann auch für mehrere Jahre eine automatische Sommer-/Winterzeitumschaltung generieren, wenn der Anwender die entsprechenden Parameter im Setup-Menü einstellt.

Impuls- und Frequenzausgänge (F_SYNTH optional)

Der Impulsgenerator der Satellitenfunkuhr GPS170 erzeugt Impulse zum Sekundenwechsel (P_SEC) und zum Minutenwechsel (P_MIN). Zusätzlich werden feste Ausgangsfrequenzen von 10 MHz, 1 MHz und 100 kHz vom OCXO abgeleitet. All diese Signale sind mit TTL-Pegel an der rückseitigen Steckverbindung herausgeführt. Der eingebaute Synthesizer erzeugt eine im Bereich von 1/8 Hz bis 10 MHz einstellbare Frequenz, die gleichfalls mit dem internen Zeitraster synchronisiert ist. Für Frequenzen bis zu 10 kHz kann die Phasenlage dieses Ausgangssignals von -360° bis +360° eingestellt werden. Sowohl die Ausgangsfrequenz als auch die Phase können entweder über die Bedienelemente der Frontplatte oder über die serielle Schnittstelle COM0 eingestellt werden. Der Ausgang des Frequenzsynthesizers ist als Sinusausgang (F_SYNTH_SIN), als Logikausgang mit TTL-Pegel (F_SYNTH) und als Open-Drain-Ausgang (F_SYNTH_OD) ausgeführt. Der Open-Drain-Ausgang kann direkt einen Optokoppler treiben.

Standardmäßig bleiben die Impuls- und der Synthesizerausgang nach dem Einschalten des Systems inaktiv, bis der Empfänger synchronisiert hat. Das Gerät kann jedoch im Setup-Menü so konfiguriert werden, daß diese Ausgänge sofort nach dem Einschalten aktiviert werden. Ein zusätzlicher TTL-Ausgang (TIME_SYN) gibt den Synchron-Status aus. Dieser Ausgang schaltet auf TTL-High, wenn der Empfänger synchronisiert hat, und zurück auf TTL-Low, wenn eine Systemstörung auftritt, kein einziger Satellit mehr empfangen werden kann oder der Anwender eine andere Betriebsart des Gerätes erzwingt.

Time Capture Eingänge


An der rückseitigen Steckerleiste sind zwei TTL-Eingänge (CAP0 und CAP1) vorgesehen, mit denen beliebige Ereignisse zeitlich festgehalten werden können. Wenn an einem dieser Eingänge eine fallende TTL-Flanke erkannt wird, speichert der Mikroprozessor die Nummer des Eingangs und die aktuelle Zeit in einem Pufferspeicher, der bis zu 500 Einträge aufnehmen kann. Die Capture-Ereignisse können über die serielle Schnittstelle COM1ausgegeben werden. Durch den Pufferspeicher kann entweder eine zeitlich begrenzte, schnelle Folge von Ereignissen (Intervall bis hinunter zu 1.5 msec) oder eine dauernde Folge von Ereignissen mit niedrigerer Wiederholzeit (abhängig von der Übertragungsrate von COM1) aufgezeichnet werden. Der Ausgabestring besteht aus ASCII-Zeichen, eine genaue Beschreibung dem Abschnitt "Format des GPS170 Capture-Telegramms" zu entnehmen. Falls der Pufferspeicher überläuft, wird eine Meldung ("** capture buffer full" ausgegeben, falls der Zeitabstand zwischen zwei Ereignissen am selben Eingang zu gering ist, wird die Meldung "** capture overrun" gesendet.

Serielle Schnittstellen (4x COM optional)

Die Satellitenfunkuhr GPS170 stellt zwei serielle Schnittstellen bereit. Standardmäßig bleiben diese nach dem Einschalten des Systems inaktiv, bis der Empfänger synchronisiert hat. Das Gerät kann jedoch über die serielle Schnittstelle so konfiguriert werden, daß die Schnittstellen sofort nach dem Einschalten aktiviert werden. Die Übertragungsgeschwindigkeit, das Datenformat sowie die Art der Ausgabetelegramme können über die serielle Schnittstelle für beide Schnittstellen getrennt eingestellt werden. COM0 ist vom Ausgabetelegramm und von der Steckerbelegung her völlig kompatibel zu anderen Meinberg Funkuhren mit serieller Ausgabe. Beide Schnittstellen können ein Zeittelegramm sekündlich, minütlich oder nur auf Anfrage durch ein ASCII '?' aussenden. COM1 kann zusätzlich als Ausgang für Capture-Ereignisse konfiguriert werden, wobei Telegramme entweder automatisch nach einem Capture-Ereignis oder auf Anfrage ausgegeben werden. Das Format der Telegramme ist im Abschnitt "Format des Meinberg Standard-Zeittelegramms" beschrieben. Bei Bedarf kann eine separate Programmieranleitung angefordert werden, die ein binäres Datenformat beschreibt, mit dessen Hilfe GPS170 über die serielle Schnittstelle COM0 parametriert werden kann.

DCF77 Emulation

Die Satellitenfunkuhr GPS170 generiert an einem TTL-Ausgang Zeitmarken, die kompatibel zu den Zeitmarken des deutschen Zeitzeichensenders DCF77 sind. Der Langwellensender DCF77 steht in Mainflingen bei Frankfurt und dient zur Verbreitung der amtlichen Uhrzeit der Bundesrepublik Deutschland, das ist die Mitteleuropäische Zeit MEZ(D) bzw. die Mitteleuropäische Sommerzeit MESZ(D). Der Sender wird durch die Atomuhrenanlage der Physikalisch Technischen Bundesanstalt (PTB) in Braunschweig gesteuert und sendet in Sekundenimpulsen codiert die aktuelle Uhrzeit, das Datum und den Wochentag. Innerhalb jeder Minute wird einmal die komplette Zeitinformation übertragen. Die von GPS170 generierten Zeitmarken geben jedoch die Ortszeit wieder, wie in der Zeitzoneneinstellung des Setup-Menüs konfiguriert. Enthalten sind auch Ankündigungen von Sommer-/Winterzeitumschaltungen sowie die Schaltsekundenwarnung. Das Kodierschema ist wie folgt:

Sekundenmarken mit einer Dauer von 0.1 sec entsprechen einer binären "0" und solche mit 0.2 sec einer binären "1". Die Information über die Uhrzeit und das Datum sowie einige Parity- und Statusbits finden sich in den Sekundenmarken 17 bis 58 jeder Minute. Durch das Fehlen der 59. Sekundenmarke wird die Minutenmarke angekündigt. Die Zeitmarken sind mit TTL-Pegel (aktiv HIGH) an der Steckerleiste verfügbar.

Programmierbare Pulsausgänge (optional)

An der rückseitigen Steckerleiste sind drei TTL-Ausgänge (Prog Pulse 0-2) vorgesehen, über die beliebig programmierbare Impulse ausgegeben werden können.

Weitere technische Details sind im hinteren Teil des Manuals beschrieben.

Time Code Ausgänge (optional)

Allgemeines

Schon zu Beginn der fünfziger Jahre erlangte die Übertragung codierter Zeitinformation allgemeine Bedeutung. Speziell das amerikanische Raumfahrtprogramm forcierte die Entwicklung dieser zur Korrelation aufgezeichneter Meßdaten verwendeten Zeitcodes. Die Festlegung von Format und Gebrauch dieser Signale war dabei willkürlich und lediglich von den Vorstellungen der jeweiligen Anwender abhängig. Es entwikkelten sich hunderte unterschiedlicher Zeitcodes von denen Anfang der sechziger Jahre einige von der "Inter Range Instrumantation Group" (IRIG) standardisiert wurden, die heute als "IRIG Time Codes" bekannt sind.

Neben diesen Zeitsignalen werden jedoch weiterhin auch andere Codes, wie z.B. NASA36, XR3 oder 2137, benutzt. Die GPS170 beschränkt sich jedoch auf die Generierung des IRIG-B Formats, auf den in Frankreich genormten AFNOR NFS-87500 Code, sowie auf den IEEE1344 Code. IEEE1344 ist ein IRIG-B123 Code der um Informationen über Zeitzone, Schaltsekunden und Datum erweitert wurde. Auf Wunsch können auch andere Übertragungsarten realisiert werden.

An der rückseitigen Steckerleiste sind ein IRIG-B moduliertes (3Vss an 50 Ohm) und ein IRIG-B unmoduliertes TTL Signal vorgesehen.

IInstallation

Spannungsversorgung

Die benötigte Betriebsspannung des Systems GPS170_LCD-MP entnehmen Sie bitte dem Kapitel "Technischer Anhang" am Ende dieses Manuals.

Antennenmontage

Die GPS-Satelliten sind nicht geostationär positioniert, sondern bewegen sich in circa 12 Stunden einmal um die Erde. Satelliten können nur dann empfangen werden, wenn sich kein Hindernis in der Sichtlinie von der Antenne zu dem jeweiligen Satelliten befindet. Aus diesem Grund muß die Antennen-/Konvertereinheit an einem Ort angebracht werden, von dem aus möglichst viel Himmel sichtbar ist. Für einen optimalen Betrieb sollte die Antenne eine freie Sicht von 8° über dem Horizont haben. Ist dies nicht möglich, sollte die Antenne so montiert werden, dass sie eine freie Sicht Richtung Äquator hat. Die Satellitenbahnen verlaufen zwischen dem 55. südlichen und 55. nördlichen Breitenkreis. Ist auch diese Sicht ziemlich eingeschränkt, dürften vor allem Probleme entstehen, wenn vier Satelliten für eine neue Positionsberechnung gefunden werden müssen.

Die Montage kann entweder an einem stehenden Mastrohr mit bis zu 60 mm Außendurchmesser oder direkt an einer Wand erfolgen. Ein passendes, 50 cm langes Kunststoffrohr mit 50 mm Außendurchmesser und zwei Wand- bzw. Masthalterungen gehören zum Lieferumfang der GPS170. Als Antennenzuleitung kann ein handelsübliches 50Ω Koaxialkabel verwendet werden. Die maximale Leitungslänge zwischen Antenne und Empfänger ist vom Dämpfungsfaktor des verwendeten Koaxialkabels abhängig.

Beispiel:

Kabeltyp	Kabel-Ø [mm]	Dämpfung bei 100MHz [dB]/100m	Max. Kabellänge [m]
RG58/CU	5mm	15,9	300 1
RG213	10,5mm	6,9	700 1

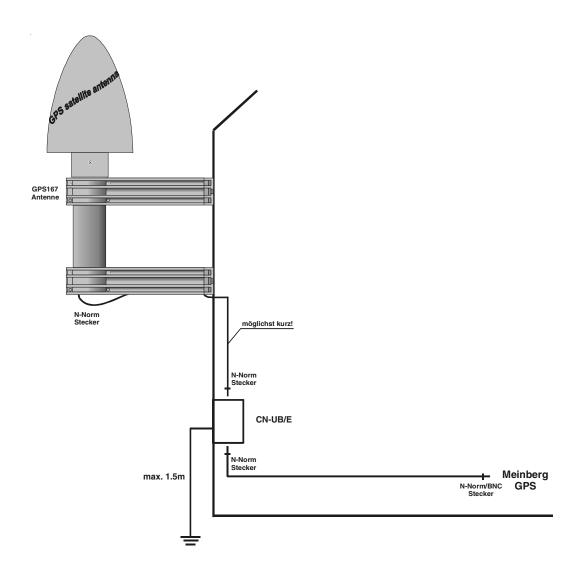
¹⁾ Die Angaben sind für Geräte mit Antennen ab Baujahr Januar 2005.

Bei den angegebenen Daten handelt es sich um typische Werte. Die genauen Werte sind im Datenblatt des eingesetzten Kabels nachzuschlagen.

Bei Einsatz des optional lieferbaren Antennenverteilers können mehrere Empfänger an einer Antenne angeschlossen werden. Die Gesamtlänge eines Stranges von der Antenne bis zum Empfänger darf die maximale Kabellänge nicht überschreiten. Der Antennenverteiler darf sich an einer beliebigen Position dazwischen befinden.

Bei der Antennenmontage mit CN-UB/E (CN-UB-280DC) ist zu beachten, dass dieser direkt nach Gebäudeeintritt des Antennenkabels montiert wird. Der CN-UB/E ist nicht zur Außenmontage geeignet.

Kurzschluß auf der Antennenleitung


Sollte auf der Antennenleitung ein Kurzschluß auftreten, wird dieser durch eine Warnmeldung im Display angezeigt.

ANTENNA SHORT-CIRCUIT
DISCONNECT POWER !!!

In diesem Fall muß die Uhr ausgeschaltet werden, der Fehler behoben und danach die Uhr wieder eingeschaltet werden. Die Versorgungsspannung für die Antennen / Konvertereinheit beträgt im Leerlauf ca.18.5 V_{DC} und bei angeschlossener GPS Antenne ca.16 V_{DC} .

Antennenmontage mit CN-UB/E (optional)

Der Überspannungsschutz CN-UB/E ist optional verfügbar. Im Normalfall wird die Antenne über das Antennenkabel direkt an das System angeschlossen.

Einschalten des Systems

Nachdem die Antenne und die Stromversorgung angeschlossen wurden, ist das Gerät betriebsbereit. Etwa 10 Sekunden (OCXO-LQ) bis zu 3 Minuten (OCXO-MQ / HQ) nach dem Einschalten hat der OCXO seine Betriebstemperatur und damit seine Grundgenauigkeit erreicht, die zum Empfang der Satellitensignale erforderlich ist. Wenn im batteriegepufferten Speicher des Empfängers gültige Almanach- und Ephemeriden vorliegen und sich die Empfängerposition seit dem letzten Betrieb nicht geändert hat, kann der Mikroprozessor des Geräts berechnen, welche Satelliten gerade zu empfangen sind. Unter diesen Bedingungen muß nur ein einziger Satellit empfangen werden, um den Empfänger synchronisieren zu lassen und die Ausgangsimpulse zu erzeugen, daher dauert es nur maximal 1 Minute (OCXO-LQ) bis zu 10 Minuten (OCXO-MQ / HQ) , bis die Impulsausgänge aktiviert werden. Nach ca. 20-minütigem Betrieb ist der OCXO voll eingeregelt und die erzeugte Frequenz liegt innerhalb der spezifizierten Toleranz.

Wenn sich der Standort des Empfängers seit dem letzten Betrieb um einige hundert Kilometer geändert hat, stimmen Elevation und Doppler der Satelliten nicht mit den berechneten Werten überein. Das Gerät geht dann in die Betriebsart **Warm Boot** und sucht systematisch nach Satelliten, die zu empfangen sind. Aus den gültigen Almanachs kann der Empfänger die Identifikationsnummern existierender Satelliten erkennen. Wenn vier Satelliten empfangen werden können, kann die neue Empfängerposition bestimmt werden und das Gerät geht über zur Betriebsart **Normal Operation**. Sind keine Almanachs verfügbar, z. B. weil die Batteriepufferung unterbrochen war, startet die GPS170 in der Betriebsart **Cold Boot.** Der Empfänger sucht einen Satelliten und liest von diesem den kompletten Almanach ein. Nach etwa 12 Minuten ist der Vorgang beendet und die Betriebsart wechselt nach **Warm Boot**.

In der Standardeinstellung werden nach einem Power-Up bis zur Synchronisation weder Impulse, Synthesizerfrequenzen noch serielle Telegramme ausgegeben. Es ist jedoch möglich, das Gerät so zu konfigurieren, dass sofort nach dem Einschalten ein oder mehrere Ausgänge aktiv sind. Wenn das System in einer neuen Umgebung (z.B. neue Empfängerposition, neues Netzteil) betrieben wird, kann es u.U. einige Minuten dauern bis der OCXO seine Frequenz eingeregelt hat. Bis dahin reduzieren sich die Genauigkeiten der Frequenz auf 10-8 und der Impulse auf ±5µs.

Bedienelemente der Frontplatte

FAIL LED

Die Leuchtdiode FAIL ist immer dann eingeschaltet, wenn der TIME_SYN-Ausgang nicht aktiv ist (Empfänger nicht synchron).

LOCK LED

Die Leuchtdiode LOCK wird eingeschaltet, wenn nach Inbetriebnahme des Geräts mindestens vier Satelliten empfangen werden konnten und der Empfänger seine Position berechnet hat. Im Normalbetrieb wird die Empfängerposition laufend nachgeführt, solange mindestens vier Satelliten empfangen werden können. Bei bekannter, unveränderlicher Position wird nur ein Satellit benötigt, um die interne Zeitbasis an die GPS-Systemzeit anzubinden.

LC Display

Das zweizeilige LC-Display zeigt Daten des Empfängers wie Position und Zeit sowie den Status des Synthesizer-Ausgangs. Außerdem können mit Hilfe der unten beschriebenen Tasten Betriebsparameter gezeigt und geändert werden. Der nächste Abschnitt beschreibt ausführlich alle Menüs. Eine Kurzreferenz befindet sich am Ende dieses Handbuchs.

Taste MENU

Diese Taste schaltet nacheinander durch mehrere Menüs.

Taste CLR/ACK

Mit Hilfe dieser Taste werden geänderte Betriebsparameter im batteriegepufferten Speicher abgelegt. Falls ein Eingabemenü verlassen wird, ohne diese Taste zu betätigen, werden alle bis dahin gemachten Änderungen verworfen.der Sichtbarkeit der Satelliten falsche Ergebnisse liefert. Wenn der Benutzer in einem solchen Fall manuell in den Boot Mode schaltet, kann die Zeitspanne bis zur Synchronisation wesentlich verringert werden, obwohl der Empfänger dieses nach einer Weile selbst tun würde, wenn keine Satelliten empfangen werden können. Das Gerät geht in die Betriebsart WARM BOOT, wenn sich noch gültige Satellitendaten im Speicher befinden, ansonsten werden diese im COLD BOOT neu eingelesen.

Taste NEXT

In einem Dateneingabemenü (LCD Cursor ist sichtbar) wird mit Hilfe dieser Taste der Cursor zu der zu ändernden Ziffer bewegt. In einem Menü, welches nur Daten anzeigt (Cursor nicht sichtbar), wird bei Betätigung dieser Taste ein eventuell vorhandenes Untermenü aufgerufen.

Taste INC

Mit Hilfe dieser Taste wird bei der Dateneingabe die Ziffer bzw. der Buchstabe an der Cursorposition geändert.

Die Menüs im Einzelnen

Hauptmenü

Das Hauptmenü wird angezeigt, wenn nach Einschalten des Geräts die Initialisierungsphase abgeschlossen ist. Die erste Zeile im Display zeigt die Betriebsart wie oben beschrieben. Statt "NORMAL MODE" kann auch "COLD BOOT", "WARM BOOT" oder "UPDATE ALMANAC" erscheinen. Wenn die Antennenleitung unterbrochen ist, kommt hier die Meldung "ANTENNA FAULTY".

NORMAL	OPERATION	Mon,	DD.MM.YYYY
		UTC	12:00:00

Die nächsten zwei Zeilen zeigen das aktuelle Datum, den Namen der Zeitzone (wie im Setup-Menü eingegeben) und die aktuelle Zeit entsprechend der eingestellten Zeitzone. In der letzten Zeile wird der Status des Synthesizers angezeigt. Die Zeile kann folgendermaßen aussehen:

"Synth disabled"	Synthesizer ist abgeschaltetet (Frequenz 0.000 eingestellt)
"F.synth inhibited"	GPS170 hat noch nicht synchronisiert, der Synthesizer wird jedoch erst nach Synchronisierung freigeschaltet.
" (free)"	Die eingestellte Frequenz wird erzeugt, die Phase des Synthesizerausgangs ist aber nicht synchron zum Sekundenimpuls, entweder weil der Synthesizer schon freigeschaltet wurde, obwohl GPS170 noch nicht synchroniert hat, oder weil eine Frequenz größer als 10 kHz eingestellt wurde.

" (drft)"	Die eingestellte Frequenz wird erzeugt, die Phase des Synthesizerausgangs war bereits synchron zum Sekundenimpuls, jedoch kann die Phase momentan nicht kontrolliert und korrigiert werden, da keine Satellitendaten empfangen werden.
" (fix)"	Die eingestellte Frequenz wird fest auf den softwaremäßig eingestellten Wert erzeugt.

Wenn die Taste NEXT einmal gedrückt wird, zeigt ein Untermenü Seriennummer und die Software-Versionen des Gerätes:

Meinberg	GPS170	S/N:	0290100xxx70
REV:1.xx			LCD_2

Wenn die Taste NEXT ein zweites Mal gedrückt wird, zeigt ein Untermenü weitere Receiver Information des Gerätes:

RECEIVER INFO:	PROUT: 3	NCOM: 4
FF_OUT: n/a	OCXO_LQ	02E3003

Bedeutung der Abkürzungen und eingestellte Standardwerte:

"PROUT: 0"	programmierbare Pulse Standard: 0 (nicht herausgeführt) optional: 3 (bis zu drei prog. Pulse)
"NCOM: 2"	Serielle Schnittstellen Standard: 2 (COM0 und COM1) optional: 4 (COM0 - 3)
"FF_OUT:"	Frequenzsynthesizer für fest einstellbare Frequenzen Standard: N/A (nicht herausgeführt)
"OCXO_LQ"	verwendeter Oszillatortyp (siehe Oszillatorliste)
"002E3003"	EPLD Version (Prüfsumme)

Menü RECEIVER POS.

Dieses Menü zeigt die aktuelle Empfängerposition an. Mit Hilfe des Tasters NEXT kann zwischen drei Formaten gewählt werden: Das Standardformat zeigt geographische Breite (Latitude), geographische Länge (Longitude) und Höhe über Normal Null (Altitude), wobei Breite und Länge in Grad, Minuten und Sekunden sowie die Höhe in Metern angegeben werden. Das nächste Format ist auch geographisch, jedoch werden Breite und Länge in Grad mit Nachkommastellen angezeigt. Das dritte Format gibt die Position in kartesischen Koordinaten (Earth Centered, Earth Fixed; ECEF) an, wobei der Nullpunkt mit dem Mittelpunkt der Erde zusammenfällt und die x-Richtung in der Äquatorebene zum Null-Meridian weist.

RECEIVER POSITION
Lat:51°59'06''N Lon: 9°13'30''E Al:110m

RECEIVER POSITION
Lat: 51.9851° Lon: 9.2253° Al: 110m

RECEIVER POSITION x: 3885422m y: 631059m z: 5001868m

Menü SV CONSTELLATION

Die zweite Zeile des Menüs Satellitenkonstellation (SV Constellation) gibt einen Überblick, wie viele Satelliten nach den Berechnungen des Empfängers gerade in Sicht sind, d. h., eine Elevation von mindestens 8° über dem Horizont haben. Die dritte Zeile gibt die Anzahl der Satelliten, die empfangen und zur Positionsbestimmung genutzt werden können und die letzte Zeile zeigt die Nummern der momentan zur Positionsbestimmung benutzten vier Satelliten.

SATELLITE CONSTELLATION
In view: 9 Good: 8 Sel: 3 19 26 13

Die Genauigkeit der berechneten Empfängerposition und Zeitabweichung ist abhängig von der Stellung der vier ausgewählten Satelliten zueinander. Aus den Satellitenpositionen und der Empfängerposition lassen sich Werte (Dilutions Of Precision; DOP) bestimmen, die eine Beurteilung der ausgewählten Konstellation zulassen. Diese Werte können in einem Untermenü angezeigt werden. PDOP ist die Abkürzung für Position Dilution Of Precision, TDOP für Time Dilution Of Precision und GDOP für General Dilution Of Precision. Niedrigere Zahlenwerte bedeuten hierbei höhere Genauigkeit.

DILUTION OF PRECISION PDOP: 4.33 TDOP: 2.88 GDOP: 5.20

Menü SV POSITION

Dieses Menü zeigt Informationen über momentan sichtbare Satelliten. Elevation, Azimuth und Entfernung vom Empfänger geben die Position des Satelliten am Himmel an. Die Dopplerfrequenz zeigt an, ob der Satellit vom Horizont her aufsteigt (Doppler positiv) oder zum Horizont hin verschwindet (Doppler negativ). Durch Betätigung der Taste NEXT können alle in Sicht befindlichen Satelliten angezeigt werden.

SATELITE 4 INFO: El: 17° AZ: 204° Dist: 24000 km Dopp: -3.550 kHz

Menü USER CAPTURE

Der Zeitpunkt des letzten Capture-Ereignisses wird unter diesem Menüpunkt angezeigt, entsprechend der im Setup-Menü eingestellten Zeitzone umgerechnet auf Ortszeit. Mit Hilfe der Taste NEXT kann zwischen den beiden Eingängen gewählt werden. Falls in der zweiten Zeile eine Fehlermeldung erscheint ("Cap. Overrun" oder "Cap. Buffer Full"), kann diese durch Betätigung der Taste CLR/ACK quittiert werden.

USER CAPO
UTC DD.MM.YYYY 12:00:00.1234567

USER CAP1 NA

Menü SETUP

Von diesem Menü aus können mehrere Untermenüs angewählt werden, die entweder der Parametrierung des Gerätes dienen oder eine bestimmte Betriebsart erzwingen. Nachdem mit Hilfe der Taste NEXT das gewünschte Untermenü ausgewählt wurde, kann durch Betätigung von CLR/ACK das Dateneingabemenü aufgerufen werden. In den Dateneingabemenüs werden zunächst die eingestellten Werte angezeigt. Diese können bei Bedarf mit Hilfe der Tasten NEXT und INC geändert werden. Wenn die Änderungen gespeichert werden sollen, **muß** einmal die Taste CLR/ACK betätigt werden, andernfalls werden alle Änderungen verworfen, wenn die Dateneingabe durch Betätigung von MENU verlassen wird. Dient das Untermenü dazu, eine bestimmte Betriebsart zu erzwingen (z. B. Cold Boot), wird der Benutzer aufgefordert, seine Auswahl durch nochmalige Betätigung von CLR/ACK zu bestätigen.

SETUP FREQUENCY OUTPUT (optional)

Mit Hilfe dieses Menüs kann die Ausgangsfrequenz und Phase des eingebauten Synthesizers eingestellt werden. Frequenzen von 1/3 Hz bis zu 10 MHz sind durch Eingabe von vier Ziffern und einem Frequenzbereich einstellbar. Der Frequenzbereich wird durch Betätigung der INC-Taste gewählt, wenn der Cursor auf der Einheit Hz, kHz oder MHz positioniert ist. Wenn der Bereich Hz eingestellt wurde, sind nur die Nachkommastellen 0.0, 0.1 (angezeigt als 1/8), 0.2 (angezeigt als 1/4), 0.3 (angezeigt als 1/3), 0.5 und 0.6 (angezeigt als 2/3) erlaubt. Andere Werte führen zu der Fehlermeldung "(inval. frac)". Bei Einstellung von 1/8, 1/4, 1/3 oder 2/3 werden echte Bruchteile von Hertz erzeugt, nicht etwa 0.33 Hz oder 0.66 Hz. Durch Eingabe der Frequenz 0 Hz kann der Synthesizer abgeschaltet werden.

In der letzten Zeile des Displays kann die Phasenlage der eingestellten Frequenz im Bereich -360° bis +360° mit einer Auflösung von 0.1° eingegeben werden. Bei Vergrößerung des Phasenwinkels wird das Ausgangssignal mehr verzögert. Falls eine Frequenz größer als 10 kHz eingestellt wurde, kann die Phase nicht geändert werden und im Display erscheint die Meldung "(phase ignored)". Der Synthesizer wird auf die geänderten Werte eingestellt, wenn man die Taste CLR/ACK betätigt.

SETUP: FREQUENCY OUTPUT

Freq: 100.0 Hz Phase: +90.0°el

SETUP ENABLE OUTPUTS

In diesem Untermenü wird festgelegt, zu welchem Zeitpunkt nach dem Einschalten die seriellen Schnittstellen, die Impulsausgänge und der Ausgang des Frequenzsynthesizers freigeschaltet werden. Ausgänge, für die der Wert always angezeigt wird, werden immer sofort nach der Initialisierungsphase des Systems freigegeben. Ausgänge, für die if sync angezeigt wird, werden erst freigegeben, wenn die Systemzeit anhand der Satellitensignale überprüft und korrigiert wurde. Standardwert für alle Ausgänge ist if sync.

SETUP: ENABLE OUTPUTS

Serial: if sync Pulses: if sync Synth: if sync

SETUP TIME ZONE

In diesem Untermenü wird der Name der Ortszeit sowie die Abweichung der Ortszeit von UTC eingegeben. In der linken Hälfte des Displays werden Name und Abweichung für die normale Ortszeit angegeben (z. B. MEZ = UTC + 1h), in der rechten Hälfte dagegen Name und Zeitabweichung, wenn die Sommerzeitumschaltung aktiv ist (z. B. MESZ = UTC + 2h). Der Datumsbereich, in dem auf Sommerzeit geschaltet wird, wird in den beiden nächsten Untermenüs eingegeben.

DAYLIGHT SAVING OFF: !MEZ ! +01:00h
DAYLIGHT SAVING ON : !MESZ ! +02:00h

SETUP DAYLIGHT SAV ON/OFF

Diese beiden Untermenüs dienen der Eingabe des Datumsbereiches, in dem Sommerzeit (Daylight Saving) aktiviert ist. GPS170 bietet zwei Möglichkeiten zur Eingabe von Sommer-/Winterzeit: Entweder werden Datum und Uhrzeit der Umschaltpunkte für ein Jahr exakt definiert oder es werden Randbedingungen gesetzt, mit deren Hilfe das Gerät automatisch für mehrere Jahre den Tag der Umschaltung bestimmen kann. Die Abbildungen unten zeigen beide Varianten: Wird die Jahreszahl als '*' angezeigt, muß ein Wochentag eingegeben werden; dann ist der Tag der Umschaltung der erste Tag ab dem eingegebenen Datum, der mit dem eingegebenen Wochentag übereinstimmt. In der Abbildung unten ist z. B. der 25. März im Jahr 2000 ein Samstag; am darauffolgenden Sonntag, dem 26. März, zur angegebenen Uhrzeit, findet die Umschaltung auf Sommerzeit statt.

Alle Sommer-/Winterzeit- Umschaltregeln, wie der erste, zweite, ..., zweitletzte, letzte Sonntag (bzw. Montag, ...) im Monat y lassen sich umschreiben auf den ersten Sonntag (bzw. Montag, ...) nach dem x-ten Tag des Monats y.

Wird eine bestimmte Jahreszahl eingegeben, ist der Tag der Umschaltung genau festgelegt und der Wochentag wird als '* angezeigt.

DAYLIGHT SAV ON

DAYLIGHT SAV ON Date: 25.03.****

Day Of Week: SUN Time: 2:00:00

SETUP: DAYLIGHT SAV OFF

DAYLIGHT SAV OFF Date: 25.10.****

Day Of Week: SUN Time: 3:00:00

Für den Fall, daß keine Sommerzeitumstellung benötigt wird, sind unter beiden Menüpunkten gleiche Daten und Zeiten mit beliebigen Werten zu setzen. Es sollte jedoch jeweils eine gleiche feste Jahreszeit eingegeben werden (siehe nachfolgende Abbildung). Außerdem sind unter dem Menüpunkt TIMEZONE gleiche Offsetwerte für DAYLIGHT SAVE ON / OFF zu programmieren. Nach Eingabe dieser Werte sollte ein Restart des Gerätes erfolgen.

DAYLIGHT SAV ON Date: 26.03.2000
Day Of Week: *** Time: 2:00:00

DAYLIGHT SAV OFF Date: 26.03.2000
Day Of Week: *** Time: 2:00:00

DAYLIGHT SAVING OFF: !TIME! +08:00h
DAYLIGHT SAVING ON: !TIME! +08:00h

Beispiel für eine Region ohne Sommerzeit mit einer Abweichung der Ortszeit von +8h gegenüber UTC.

SETUP SERIAL PORT PARM (4x optional)

Mit Hilfe dieses Untermenüs können Übertragungsgeschwindigkeit und Datenformat der seriellen Schnittstellen eingestellt werden. Standardwerte sind:

COM0: 19200 baud, 8N1 COM2: 9600 baud, 7E2 COM1: 9600 baud, 8N1 COM3: 9600 baud, 7E2

Anmerkung: Die Porteinstellungen werden bei einem "INIT USER PARMS" bzw. "Standardparameter wiederherstellen" nur dann auf die Standardwerte gesetzt, wenn unzulässige Werte eingestellt wurden.

SETUP: SERIAL PORT PARM

COM0: 19200 8N1 COM1: 9600 8N1 COM2: 9600 7E2 COM3: 9600 7E2

SETUP SERIAL STRING TYPE

Mit Hilfe dieses Untermenüs können verschiedene Formate der Ausgabetelegramme für alle seriellen Schnittstellen eingestellt werden. Standardwerte sind:

COM0: Meinberg COM2: Meinberg COM1: Capture COM3: Meinberg

SETUP: SER. STRING TYPE

COM0: Meinbg Std COM1: Capture COM2: Meinbg Std COM3: Meinbg Std

Es kann zwischen folgenden Zeittelegrammen gewählt werden:

- Meinberg Standard Telegramm
- SAT Telegramm
- NMEA Telegramm (RMC)
- UNI-Erlangen Telegramm
- Computime Telegramm
- Meinberg Capture Telegramm
- SPA Telegramm

Genauere Angaben siehe Zeittelegramme im hinteren Teil des Manuals

SETUP SERIAL STRING MODE

In diesem Untermenü wird der Ausgabemode der beiden seriellen Schnittstellen eingestellt. Der mögliche Ausgabemode wird durch das eingestellte Telegrammformat bestimmt. Für die normalen Zeittelegramme sind die Betriebsarten sekündlich, minütlich und auf Anfrage durch ein ASCII '?' möglich. Wird der Capture Telegramm eingestellt, ist eine Ausgabe automatisch bei Triggerung oder auf Anfrage möglich. Ist die letztgenannte Funktion ausgewählt, muß der Anwender dafür Sorge tragen, daß vorhandene Capture-Ereignisse ausgelesen werden, da ansonsten der Capture-Puffer überläuft und keine weiteren Ereignisse gespeichert werden können. Ein Capture-Ereignis kann in dieser Betriebsart ausgelesen werden durch Eingabe eines ASCII-'?' an COM1 oder durch das binäre Protokoll über COM0.

SETUP	:	SER.	STRING	MODI	Ξ
0 0110 1		Second Second			Cap.Events Per Second

SETUP POUT X (optional)

Dieses Menü dient zur Konfiguration der programmierbaren Impulsausgänge. Es sind drei Pulsausgänge einstellbar (POUT 1-3).

```
POUT x MODE: POUT OFF
AKT.: High LNG.: 00.00 sec
```

Mode

Im Feld Mode wird der Betriebsmodus des jeweiligen Ausgangs festgelegt. Verfügbare Betriebsmodi sind: POUT OFF, POUT TIMER, SINGLE PULSE, CYCLIC PULSE, PPS, PPM and PPH.

Timer mode

POUT x MODE: POUT TIMER AKT.: High TIME 1(-3)10:50:00 Time 1 ON: 11:00:00 OFF: Time 2 13:00:00 ON: OFF: 14:00:00 Time 3 ON: 23:45:00 OFF: 09:30:00

Nachdem der Timer Modus gewählt ist, erscheint folgende Anzeige, wie im Bild oben dargestellt ist. Im Timer Modus simuliert der Ausgang eine Schaltuhr mit Tagesprogramm. Auf jedem Ausgang der Funkuhr sind je drei Ein- und drei Ausschaltzeiten am Tag programmierbar. Soll eine Schaltzeit programmiert werden, so muß die Einschaltzeit 'On' und die zugehörige Ausschaltzeit 'OFF' eingegeben werden. Im dargestellten Beispiel sind die Schaltzeiten 10:50 bis 11:00 Uhr, 13:00 bis 14:00 Uhr und 23:45 bis 09:30 programmiert. Liegt der Einschaltzeitpunkt später als der Ausschaltzeitpunkt, so wird das Schaltprogramm derart interpretiert, daß der Ausschaltzeitpunkt am darauffolgenden Tag liegt, z.B. eine Programm 'On Time' 23:45:00, 'Off Time' 09:30:00 würde demnach bewirken, daß am Tag n um 23:45 Uhr der Ausgang z.B. PORT3 aktiviert, und am Tag n+1 um 09:30 Uhr deaktiviert wird. Sollen eines oder mehrere der drei Programme ungenutzt bleiben, so müssen in 'On Time' und 'Off Time' des Programms gleiche Schaltzeiten eingetragen werden. In diesem Fall wird das Programm nicht ausgewertet.

Single Pulse

Der Single Shot Modus erzeugt pro Tag einen einmaligen Impuls definierter Länge.

POUT x MODE: SING. PULS

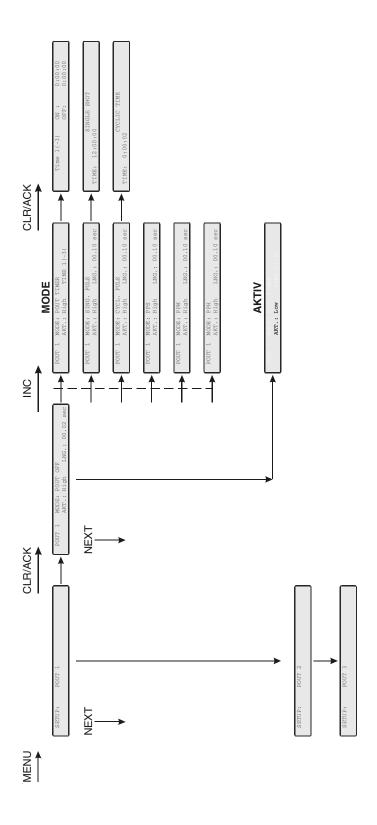
AKT.: High LNG.: 00.10 sec

SINGLE SHOT TIME: 12:00:00 Im Feld 'Time' wird die Uhrzeit eingegeben, zu der ein Impuls erzeugt werden soll. Das Feld 'Single Shot' erlaubt die Einstellung der Impulsdauer in 10ms Schritten zwischen 10ms und 10sek.

Das Beispiel zeigt einen Einzelimpuls mit 100ms Länge der jeden Tag um 12:00 Uhr ezeugt wird.

Cyclic mode

Der Cyclic Pulse Modus dient der Erzeugung zyklisch wiederholter Impulse.


CYCLIC TIME TIME: 0:00:02

Im Feld 'Cycle' wird die Zeit zwischen zwei Impulsen eingegeben (im Beispiel 2sek). Diese Zykluszeit muß immer in Stunden, Minuten und Sekunden eingegeben werden. Zu beachten ist, daß die Impulsfolge immer mit dem Übergang 0:00:00 Uhr Ortszeit synchronisiert wird. Dies bedeutet, daß der erste Impuls an einem Tag immer um Mitternacht ausgegeben wird, und ab hier mit der gewählten Zykluszeit wiederholt wird. Eine Zykluszeit von 2sek wie im Beispiel würde also Impulse um 0:00:00Uhr, 0:00:02 Uhr, 0:00:04 Uhr etc. hervorrufen. Grundsätzlich ist es möglich jede beliebige Zykluszeit zwischen 0 und 24 Stunden einzustellen, jedoch machen meistens nur Impulszyklen Sinn, die immer gleiche zeitliche Abstände zwischen zwei Impulsen ergeben. So würden zum Beispiel bei einer Zykluszeit von 1Stunde 45min Impulse im Abstand von 6300 Sekunden ausgegeben. Zwischen dem letzten Impuls eines Tages und dem 0.00Uhr Impuls würden jedoch nur 4500 Sekunden liegen.

PPS, PPM, PPH modes

Diese Modi erzeugen Impulse definierter Länge pro Sekunde, pro Minute oder pro Stunde. Im Feld 'LNG.:' wird die Impulsdauer in 10ms Schritten zwischen 10ms und 10sek eingestellt. In der Betriebsart 'PPS' ist zu beachten, daß nur eine max. Impulsdauer von 0.99s eingestellt werden kann.

Kurzübersicht der prog. Pulsausgänge

SETUP TIMECODE SETTINGS (optional)

In diesem Untermenü können die generierten Zeitcodes der GPS170 eingestellt werden. Die meisten IRIG Codes beinhalten keine Zeitzoneninformation, somit wird standardmäßig UTC ausgegeben. Auf Wunsch kann durch Auswahl "TIME: LO-CAL" die eingestellte Zeitzone der Uhr ausgegeben werden.

> SETUP: TIMECODE OUT

CODE: B002+B122

TIME: UTC

Der Time code IEEE1344 beinhaltet das TFOM (time figure of merit) Segment. Dieses Zeichen gibt den Status der vorgeschalteten Uhr an.

Fals nötig, kann TFOM durch Auswahl "disable TFOM" auf 0000 gesetzt werden. Diese Möglichkeit kann zum Testen von angeschlossenen IRIG Lesekarten hilfreich sein.

> CODE: IEEE1344 ENABLE TFOM

TIME: UTC

SETUP INITIAL POSITION

Wenn der Empfänger zum ersten Mal an einem neuen Standort in Betrieb genommen wird, der weit vom letzten Standort entfernt ist, muß GPS170 im Warm Boot nach Satelliten suchen, da die berechneten Werte für Elevation und Doppler zu sehr von den tatsächlichen abweichen. Durch Eingabe der ungefähren neuen Position kann dies vermieden werden, wodurch die Zeit bis zur Synchronisation verkürzt wird.

> SETUP: INITIAL POSITION

INITIAL POSITION Lat:51°59′06′′N Lon: 9°13′30′′E Al:110m

SETUP INITIAL TIME

Wenn die Hardware-Uhr des Systems falsch geht, berechnet der Empfänger ungültige Werte für Elevation und Doppler und muß im Warm Boot nach Satelliten suchen. Durch Eingabe der richtigen Zeit kann dies vermieden werden, wodurch die Zeit bis zur Synchronisation verkürzt wird.

SETUP: INITIAL TIME

SET INITIAL TIME MESZ
Date: DD.MM.YYYY Time: 12:00:00

INIT USER PARMS

Dieses Menü erlaubt es dem Benutzer, alle im Setup einstellbaren Parameter auf definierte Grundeinstellungen zurückzusetzen. Bevor die Initialisierung erfolgt, wird nochmals eine Bestätigung des Bedieners erwartet.

SETUP: INIT USER PARMS

Are you sure ? Press ...

INC => YES MENU => NO

INIT GPS PARMS

Dieses Menü erlaubt es dem Benutzer, alle GPS-Systemwerte zu initialisieren, d. h. alle gespeicherten Satellitendaten werden gelöscht. Bevor die Initialisierung erfolgt, wird nochmals eine Bestätigung des Bedieners erwartet. Anschließend geht das System in die Betriebsart COLD BOOT, um nach einem Satelliten zu suchen und von diesem die aktuellen Parameter einzulesen.

SETUP: INIT GPS PARMS

Are you sure ? Press ...

INC => YES MENU => NO

FORCE BOOT MODE

Dieses Menü erlaubt es dem Benutzer, den Empfänger in den Boot Mode zu schalten. Das kann erforderlich sein, wenn die Satellitendaten im batteriegepufferten Speicher zu alt sind oder wenn das Gerät an einem Ort in Betrieb genommen wird, der mehrere hundert Kilometer vom letzten Betriebstandort entfernt ist, da dann die Berechnung der Sichtbarkeit der Satelliten falsche Ergebnisse liefert. Wenn der Benutzer in einem solchen Fall manuell in den Boot Mode schaltet, kann die Zeitspanne bis zur Synchronisation wesentlich verringert werden, obwohl der Empfänger dieses nach einer Weile selbst tun würde, wenn keine Satelliten empfangen werden können. Nach Bestätigung der Auswahl geht das Gerät in die Betriebsart WARM BOOT, wenn sich noch gültige Satellitendaten im Speicher befinden, ansonsten werden diese im COLD BOOT neu eingelesen.

SETUP: FORCE BOOT MODE

Are you sure ? Press ...
INC => YES MENU => NO

ANTENNA CABLE

Dieses Menü erlaubt es dem Benutzer, die Signallaufzeit des Antennenkabels zu kompensieren. Das empfangene Zeitraster wird um ca. 5ns / m Antennenkabel verzögert. Durch Eingabe der Kabellänge wird dieser Zeitfehler ausgeglichen. Als Defaultwert wird bei Auslieferung 20m eingestellt. Die maximale Eingabemöglichkeit ist auf 700m begrenzt (Spezialkabel).

SETUP: ANTENNA CABLE

SETUP: ANTENNA CABLE

LENGTH: 0020 m

Standardparameter wiederherstellen

Wenn während des Einschaltens die beiden Tasten NEXT und INC gedrückt gehalten werden, wird der batteriegepufferte Speicher komplett gelöscht und alle vom Benutzer änderbaren Parameter werden auf Standardwerte gesetzt. Die Tasten sollten gehalten werden, bis das Hauptmenü auf dem Display erscheint. Da auch die Bahnparameter der Satelliten gelöscht sind, startet das Gerät in der Betriebsart COLD BOOT.

Update der System-Software

Falls es einmal nötig ist, eine geänderte Version der System-Software in das Gerät zu laden, kann dies über die serielle Schnittstelle COM0 geschehen, ohne das Gehäuse des Gerätes zu öffnen.

Wenn während des Einschaltens die Taste MENU gedrückt gehalten wird, aktiviert sich ein sogenannter Bootstrap-Loader des Mikroprozessors, der Befehle über die serielle Schnittstelle COM0 erwartet. Anschließend kann die neue Software von einem beliebigen PC mit serieller Schnittstelle aus übertragen werden. Das erforderliche Ladeprogramm wird gegebenenfalls zusammen mit der Systemsoftware geliefert. Der Ladevorgang ist unabhängig vom Inhalt des Programmspeichers, so daß der Vorgang bei Auftreten einer Störung während der Übertragung beliebig oft wiederholt werden kann.

Der aktuelle Inhalt des Programmspeichers bleibt solange erhalten, bis das Ladeprogramm den Befehl zum Löschen des Programmspeichers sendet. Dadurch ist sichergestellt, daß der Programmspeicher nicht gelöscht wird, wenn die Taste MENU versehentlich während des Einschaltens gedrückt war. Das Gerät ist in diesem Fall nach erneutem Einschalten wieder einsatzbereit.

Nur Service-/Fachpersonal: Austausch der Lithium-Batterie

Die Lithiumbatterie auf der Hauptplatine hat eine Lebensdauer von mindestens 10 Jahren. Sollte ein Austausch erforderlich werden, ist folgender Hinweis zu beachten:

VORSICHT!

Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur durch denselben oder einen vom Hersteller empfohlenen gleichwertigen Typ. Entsorgung gebrauchter Batterien nach Angaben des Herstellers.

Technische Daten GPS170

EMPFÄNGER: Sechskanal C/A-Code Empfänger mit abgesetzter Antennen-/

Konvertereinheit

ANTENNE: ferngespeiste Antennen-/Konvertereinheit

siehe "Technische Daten GPS170 Antenne"

ANTENNEN-

EINGANG: Spannungsfestigkeit 1000V...

Informationen zum Antennenkabel, siehe Abschnitt "Antennen-

montage"

LC-DISPLAY: 2 x 40 Zeichen, anzuzeigende Daten per Taster anwählbar

ZEIT BIS ZUR SYNCHRONI-

SATION: max. 1 Minute bei bekannter Empfängerposition und gültigen

Almanachs

ca. 12 Minuten ohne gültige Daten im Speicher

IMPULS-

AUSGÄNGE: Sekundenwechsel (P_SEC, TTL-Pegel)

Minutenwechsel (P_MIN, TTL-Pegel)

IMPULS-

GENAUIGKEIT: nach Synchronisation und 20 Minuten Betriebszeit:

TCXO HQ/OCXO LQ : besser als ± 250 nsec OCXO MQ/OCXO HQ : besser als ± 100 nsec OCXO DHQ : besser als ± 100 nsec

besser als ±2 µsec in den ersten 20 Minuten nach Synchronisati-

on

FREQUENZ-

AUSGÄNGE: 10 MHz, 1 MHz, 100 kHz (TTL-Pegel)

FREQUENZ-

SYNTHESIZER: 1/8 Hz bis 10 MHz

SYNTHESIZER-

GENAUIGKEIT: Grundgenauigkeit wie Systemgenauigkeit

1/8 Hz bis 10 kHz: Phase synchron zum Sekundenimpuls 10 kHz bis 10 MHz: Frequenzabweichung < 0.0047 Hz

SYNTHESIZER-

AUSGÄNGE: F_SYNTH: TTL-Pegel

F_SYNTH_OD: Open Drain

Drainspannung: < 100 V Laststrom nach GND: < 100 mA Verlustleistung bei 25° C: < 360 mW

F_SYNTH_SIN: Sinusförmig

Ausgangsspannung: 1.5 V eff. Ausgangsimpedanz: 200 Ohm

TIME_SYN

AUSGANG: TTL-Pegel, logisch High wenn synchron

SERIELLE SCHNITT-

STELLEN: max. 4 asynchrone serielle Schnittstellen (RS-232)

Baudrate: 300 bis 19200

Datenformat: 7N2, 7E1, 7E2, 8N1, 8N2, 8E1

Defaulteinstellung: COM0: 19200, 8N1

COM1: 9600, 8N1 COM2: 9600, 7E2 COM3: 9600, 7E2

Anmerkung: Die Porteinstellungen werden bei einem "INIT USER

PARMS" bzw. "Standardparameter wiederherstellen" nur dann auf die Standardwerte gesetzt, wenn

unzulässige Werte eingestellt wurden.

CAPTURE-

EINGÄNGE: Trigger durch fallende TTL-Flanke

Impulsfolgezeit: 1.5 msec min.

Auflösung: 100 nsec

STROM-

VERSORGUNG: $5 \text{ V} \pm 5\%$, max @1100mA (siehe Oszillatorspezifikationen)

STECK-

VERBINDER: DIN 41612, Typ C 64, Reihen a + c

HF-STECK-

VERBINDER: koaxiale N-Norm BNC HF-Buchse

UMGEBUNGS-

TEMPERATUR: $0 \dots 50^{\circ} C$

LUFT-

FEUCHTIGKEIT: 85% max.

Oszillatorspezifikationen

Accu	racy of time an	Accuracy of time and frequency outputs of Meinberg GPS- and DCF77 (PZF) receivers with different oscillator options	icy outputs of Meinberg GPS-with different oscillator options	rg GPS- and D r options	CF77 (PZF) ra	eceivers
	TCXO	дл охоо	дм охэо	дн охоо	ОСХО РНО	Rubidium
short term stability $(\tau = 1 \text{ sec})$	2 * 10 -9	1 * 10 -9	$2 * 10^{-10}$	5 * 10-12	2 * 10-12	2 * 10 -11
accuracy of PPS (pulse per second)	<pre>< +/- 250 nsec < +/- 500 nsec (GPS163)</pre>	<+/- 250 nsec	<+/- 100 nsec	<+/- 100 nsec	< +/- 100 nsec	<+/- 100 nsec
phase noise	1 Hz -60 dBc/Hz 10 Hz -90 dBc/Hz 100 Hz -120 dBc/Hz 1 kHz -130 dBc/Hz	1 Hz -60 dBc/Hz 10 Hz -90 dBc/Hz 100 Hz -120 dBc/Hz 1 kHz -130 dBc/Hz	1 Hz -75 dBc/Hz 10 Hz -110 dBc/Hz 100 Hz -130 dBc/Hz 1 kHz -140 dBc/Hz	1 Hz -100 dBc/Hz 10 Hz -130 dBc/Hz 100 Hz -145 dBc/Hz 1 kHz -155 dBc/Hz	1 Hz -100 dBc/Hz 10 Hz -125 dBc/Hz 100 Hz -140 dBc/Hz 1 kHz -150 dBc/Hz	1 Hz -75 dBc/Hz 10 Hz -89 dBc/Hz 100 Hz -128 dBc/Hz 1 kHz -140 dBc/Hz
accuracy free run, one day	+/- 1 * 10 -7 +/- 1 Hz (Note 1)	+/- 2 * 10 -8 +/- 0,2 Hz (Note 1)	+/- 1,5 * 10 -9 +/- 15 mHz (Note 1)	$+/-5 * 10^{-10}$ +/- 5 mHz (Note 1)	+/- 1 * 10 -10 +/- 1 mHz (Note 1)	$+/-2 * 10^{-11}$ +/- 0,2 mHz (Note 1)
accuracy free run, one year	+/- 1 * 10 -6 +/- 10 Hz (Note 1)	+/- 4 * 10 ⁻⁷ +/- 4 Hz (Note 1)	+/- 1 * 10 -7 +/- 1 Hz (Note 1)	+/- 5 * 10 -8 +/- 0,5 Hz (Note 1)	+/- 1 * 10 -8 +/- 0,1 Hz (Note 1)	$+/-5 * 10^{-10}$ +/- 5 mHz (Note 1)
accuracy GPS-synchronous averaged 24 h	+/- 1 * 10 -11	+/- 1 * 10 -11	+/- 5 * 10 -12	+/- 1 * 10 -12	+/- 1 * 10 ·12	+/- 1 * 10 -12
accuracy of time free run, one day	+/- 8,6 nsec	+/- 1,8 msec	+/- 130µsec	+/- 44 µsec	+/- 10 µsec	+/- 1,8 µsec
accuracy of time free run, one year	+/- 32 sec	+/- 13 sec	+/- 3,5 sec	+/- 1,6 sec	+/- 300 nsec	+/- 16 msec
temperature dependant drift, free run	+/- 1 * 10 ·6 (-2070°C)	+/-2 *10 -7 (060°C)	+/- 5 * 10 -8 (-2070°C)	+/- 1 * 10 -8 (570°C)	+/- 2 * 10 - ¹⁰ (570°C)	+/- 6 * 10 -10 (-2570°C)
power supply @25°C steady state warm up	5V / 20mA N/A	5V / 160mA 5V / 380mA	5V / 300mA 5V / 700mA	5V / 300mA 5V / 700mA	12V / 250mA 12V / 700mA	24V / 540mA N/A
suiable for clock type	GPS161 GPS163 GPS164 GPS167 (SV) GPS170 (SV) GPS16xPCI GPS16xPC	GPS161 GPS167 (SV) GPS170 (SV) GPS16xPC1 (SV only) GPS16xPC (SV only)	GPS161 GPS167 (SV) GPS170 (SV)	GPS161 GPS167 (SV) GPS170 (SV)	GPS167 (SV) GPS170 (SV)	GPS167 (SV) GPS170 (SV)
Note 1: The accuracy in Hertz is based	s based on the standard freque	on the standard frequency of 10 MHz. For example: Accuracy of TCXO (free run one day) is +/- 1 * 10 E-7 * 10 MHz = +/- 1 Hz	Accuracy of TCXO (free run o	one day) is +/- 1 * 10 E-7 *	10 MHz = +/- 1 Hz	
The given values for A minimum time of 24	the accuracy of frequency a hours of GPS-synchronicib	The given values for the accuracy of frequency and time (not short term accuracy) are only valid for a constant ambient temperature! A minimum time of 24 hours of GPS-synchronicity is required before free run starts.	acy) are only valid for a costarts.	nstant ambient temperature	- :	

Technische Daten GPS170 Antenne

ANTENNE: Dielektrische Patch Antenne, 25 x 25mm

Empfangsfrequenz: 1575.42 MHz

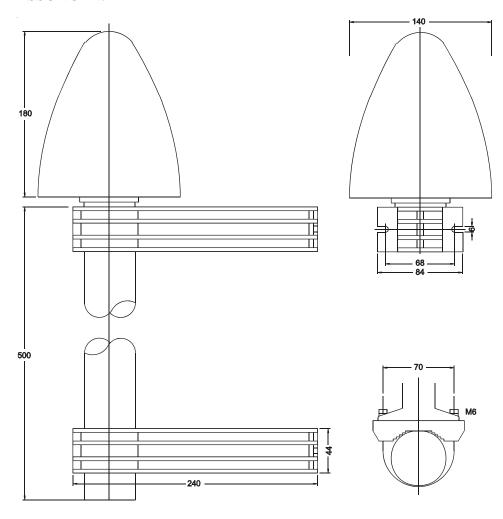
Bandbreite: 9 MHz

KONVERTER: Mischfrequenz: 10 MHz

ZF-Frequenz: 35.4 MHz

STROM-

VERSORGUNG: 12V ... 18V, ca. 100mA (über Antennenkabel)


ANSCHLUSS: N-Norm Buchse

UMGEBUNGS-

TEMPERATUR: -40 ... +65°C

GEHÄUSE: ABS Kunststoff-Spritzgussgehäuse, Schutzart: IP56

ABMESSUNGEN:

Zeittelegramme

Format des Meinberg Standard Zeittelegramms

Das Meinberg Standard-Zeittelegramm besteht aus einer Folge von 32 ASCII-Zeichen, eingeleitet durch das Zeichen STX (Start-of-Text) und abgeschlossen durch das Zeichen ETX (End-of-Text). Das Format ist:

<STX>D:tt.mm.jj;T:w;U:hh.mm.ss;uvxy<ETX>

Die *kursiv* gedruckten Buchstaben werden durch Ziffern ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

<STX>Start-Of-Text, ASCII Code 02h wird mit der Genauigkeit eines Bits zum Sekundenwechsel gesendas Datum: tt.mm.jj tt Monatstag (01..31)(01..12)mm Monat Jahr ohne Jahrhundert (00..99)der Wochentag (1..7, 1 = Montag)W hh.mm.ss die Zeit: hhStunden (00..23)mm Minuten (00..59)Sekunden (00..59, oder 60 wenn Schaltsekunde) Status der Funkuhr: (abhängig vom Funkuhrentyp) uv'#' GPS: Uhr läuft frei (ohne genaue Zeitsynchronisation)

PZF: Zeitraster nicht synchronisiert

DCF77: Uhr hat seit dem Einschalten nicht synchr.

" (Leerzeichen, 20h)

GPS: Uhr läuft GPS synchron (Grundgenauig. erreicht)

PZF: Zeitraster synchronisiert

DCF77: Synchr. nach letztem Einschalten erfolgt

v: '*' GPS: Empfänger hat die Position noch nicht überprüft PZF/DCF77: Uhr läuft im Moment auf Quarzbasis

" (Leerzeichen, 20h)

GPS: Empfänger hat seine Position bestimmt PZF/DCF77: Uhr wird vom Sender geführt

x Kennzeichen der Zeitzone:

'U' UTC Universal Time Coordinated, früher GMT

" MEZ Mitteleuropäische Standardzeit

'S' MESZ Mitteleuropäische Sommerzeit

y Ankündigung eines Zeitsprungs während der letzten Stunde vor dem Ereignis:

'!' Ankündigung Beginn oder Ende der Sommerzeit

'A' Ankündigung einer Schaltsekunde

(Leerzeichen, 20h) kein Zeitsprung angekündigt

<ETX> End-Of-Text, ASCII Code 03h

Format des Meinberg Capture Telegramms

Das Meinberg Capturetelegramm besteht aus einer Folge von 31 ASCII-Zeichen, abgeschlossen durch eine CR/LF (Carriage Return/Line Feed) Sequenz. Das Format ist:

CHx_tt.mm.jj_hh:mm:ss.fffffff<CR><LF>

Die *kursiv* gedruckten Buchstaben werden durch Ziffern ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

```
0 oder 1, Nummer des Eingangs
\mathbf{X}
           ASCII space 20h
           das Datum:
tt.mm.jj
                   Monatstag
                                             (01..31)
              tt
                                             (01..12)
              mm Monat
                   Jahr ohne Jahrhundert
                                             (00..99)
                   die Zeit:
hh:mm:ss.fffffff
                   Stunden
                                       (00..23)
              hh
              mm Minuten
                                       (00..59)
                   Sekunden
                                       (00..59, oder 60 wenn Schaltsekun-
           de)
           fffffff
                   Bruchteile der Sekunden, 7 Stellen
<CR>
           Carriage Return, ASCII Code 0Dh
<LF>
           Line Feed, ASCII Code 0Ah
```

Format des SAT Zeittelegramms

Das SAT-Zeittelegramm besteht aus einer Folge von 29 ASCII-Zeichen, eingeleitet durch das Zeichen STX (Start-of-Text) und abgeschlossen durch das Zeichen ETX (End-of-Text). Das Format ist:

<STX>tt.mm.jj/w/hh:mm:ssxxxxuv<CR><LF><ETX>

Die *kursiv* gedruckten Buchstaben werden durch Ziffern ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

<STX> Start-Of-Text, ASCII Code 02h wird mit der Genauigkeit eines Bits zum Sekundenwechsel gesendet

tt.mm.jj das Datum:

tt Monatstag (01..31) mm Monat (01..12) jj Jahr ohne Jahrhundert (00..99)

w der Wochentag (1..7, 1 = Montag)

hh:mm:ss die Zeit:

hh Stunden (00..23) *mm* Minuten (00..59)

ss Sekunden (00..59, oder 60 wenn Schaltsekunde)

xxxx Kennzeichen der Zeitzone:

UTC Universal Time Coordinated, früher GMT

MEZ Mitteleuropäische Standardzeit MESZ Mitteleuropäische Sommerzeit

u Status der Funkuhr:

'*' GPS-Empfänger hat seine Position noch nicht überprüft

' (Leerz., 20h) GPS-Empfänger hat seine Position bestimmt

v Ankündigung eines Zeitsprungs während der letzten Stunde vor dem Ereignis:

'!' Ankündigung Beginn oder Ende der Sommerzeit

' (Leerzeichen, 20h) kein Zeitsprung angekündigt

<CR> Carriage Return, ASCII Code 0Dh

<LF> Line Feed, ASCII Code 0Ah

<ETX> End-Of-Text, ASCII Code 03h

Format des Telegramms Uni Erlangen (NTP)

Das Zeitelegramm Uni Erlangen (NTP) einer **GPS-Funkuhr** besteht aus einer Folge von 66 ASCII-Zeichen, eingeleitet durch das Zeichen STX (Start-of-Text) und abgeschlossen durch das Zeichen ETX (End-of-Text). Das Format ist:

<STX>tt.mm.jj; w; hh:mm:ss; voo:oo; acdfg i;bbb.bbbbn lll.lllle hhhhm<ETX>

Die *kursiv* gedruckten Zeichen werden durch Ziffern oder Buchstaben ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

<STX> Start-Of-Text, ASCII Code 02h wird mit der Genauigkeit eines Bits zum Sekundenwechsel gesendet

tt.mm.jj das Datum:

tt Monatstag (01..31) mm Monat (01..12) jj Jahr ohne Jahrhundert (00..99)

w der Wochentag (1..7, 1 = Montag)

hh:mm:ss die Zeit:

 hh
 Stunden
 (00..23)

 mm
 Minuten
 (00..59)

ss Sekunden (00..59, oder 60 wenn Schaltsekunde)

v Vorzeichen des Offsets der lokalen Zeitzone zu UTC

oo:oo Offset der lokalen Zeitzone zu UTC in Stunden und Minuten

ac Status der Funkuhr:

a: '#' Uhr hat seit dem Einschalten nicht synchronisiert ' (Leerz., 20h) Uhr hat bereits einmal synchronisiert

c: '*' GPS-Empfänger hat seine Position noch nicht überprüft ' (Leerz., 20h) Empfänger hat seine Position bestimmt

d Kennzeichen der Zeitzone:

'S' MESZ Mitteleuropäische Sommerzeit

" MEZ Mitteleuropäische Standardzeit

f Ankündigung Beginn oder Ende der Sommerzeit während der letzten Stunde vor dem Ereignis:

'!' Ankündigung Beginn oder Ende der Sommerzeit

' ' (Leerzeichen, 20h) kein Zeitsprung angekündigt

- g Ankündigung einer Schaltsekunde während der letzten Stunde vor dem Ereignis:
 - 'A' Ankündigung einer Schaltsekunde
 - ' (Leerzeichen, 20h) kein Zeitsprung angekündigt
- *i* Schaltsekunde
 - 'L' Schaltsekunde wird momentan eingefügt (nur in 60. sec aktiv)
 - " (Leerzeichen, 20h) Schaltsekunde nicht aktiv
- bbb.bbbb Geographische Breite der Empfängerposition in Grad führende Stellen werden mit Leerzeichen (20h) aufgefüllt
- *n* Geographische Breite, mögliche Zeichen sind:
 - 'N' nördlich d. Äquators
 - 'S' südlich d. Äquators
- Ill. Illl Geographische Länge der Empfängerposition in Grad führende Stellen werden mit Leerzeichen (20h) aufgefüllt
- *e* Geographische Länge, mögliche Zeichen sind:
 - 'E' östlich Greenwich 'W' westlich Greenwich
- hhhh Höhe der Empfängerposition über Normalnull in Metern führende Stellen werden mit Leerzeichen (20h) aufgefüllt
- <ETX> End-Of-Text, ASCII Code 03h

Format des NMEA 0183 Telegramms (RMC)

Das NMEA Telegramm besteht aus einer Folge von 65 ASCII-Zeichen, eingeleitet durch das Zeichen '\$' und abgeschlossen durch die Zeichen CR (Carriage Return) und LF (Line Feed). Das Format ist:

\$GPRMC,hhmmss.ss,A,bbbb.bb,n,lllll.ll,e,0.0,0.0,ddmmyy,0.0,a*hh<CR><LF>

Die *kursiv* gedruckten Zeichen werden durch Ziffern oder Buchstaben ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

\$ Start character, ASCII Code 24h wird mit der Genauigkeit eines Bits zum Sekundenwechsel gesendet

· ·				
hhmmss.ss	die Zeit: hh Stunden (0023) mm Minuten (0059) ss Sekunden (0059, oder 60 wenn Schaltsekunde) ss Sekunden (1/10; 1/100)			
A	Status (A = Zeitdaten gültig) (V = Zeitdaten ungültig)			
bbbb.bb	Geographische Breite der Empfängerposition in Grad führende Stellen werden mit Leerzeichen (20h) aufgefüllt			
n	Geographische Breite, mögliche Zeichen sind: 'N' nördlich d. Äquators 'S' südlich d. Äquators			
11111.11	Geographische Länge der Empfängerposition in Grad führende Stellen werden mit Leerzeichen (20h) aufgefüllt			
e	Geographische Länge, mögliche Zeichen sind: 'E' östlich Greenwich 'W' westlich Greenwich			
ddmmyy	das Datum: dd Monatstag (0131) mm Monat (0112) yy Jahr ohne Jahrhundert (0099)			
a	magnetische Variation E/W			
hh	Prüfsumme (XOR über alle Zeichen außer '\$' und '*')			
<cr></cr>	Carriage Return, ASCII Code 0Dh			

Line Feed, ASCII Code 0Ah

< LF >

Format des ABB SPA Zeittelegramms

Das ABB-SPA-Zeittelegramm besteht aus einer Folge von 32 ASCII-Zeichen, eingeleitet durch die Zeichenfolge ">900WD:" und abgeschlossen durch das Zeichen <CR> (Carriage Return). Das Format ist:

>900WD:jj-mm-tt_hh.mm;ss.fff:cc<CR>

Die *kursiv* gedruckten Buchstaben werden durch Ziffern ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

```
jj-mm-tt
           das Datum:
                   Jahr ohne Jahrhundert
                                              (00..99)
              jj
                                              (01..12)
              mm Monat
                                              (01..31)
                   Monatstag
              tt
           Leerzeichen (ASCII-code 20h)
hh.mm;ss.fff
              die Zeit:
                   Stunden
                                        (00..23)
              hh
              mm Minuten
                                        (00..59)
                                        (00..59, oder 60 wenn Schaltsekunde)
                   Sekunden
              SS
                   Millisekunden
                                        (000..999)
              fff
           Prüfsumme. Die Berechnung erfolgt durch Exklusiv-Oder-Ver-
cc
           knüpfung der vorhergehenden Zeichen, dargestellt wird der resul-
           tierende Byte-Wert im Hex-Format (2 ASCII-Zeichen '0' bis '9'
           oder 'A' bis 'F')
\langle CR \rangle
           Carriage Return, ASCII Code 0Dh
```

Format des Computime Zeittelegramms

Das Computime-Zeittelegramm besteht aus einer Folge von 24 ASCII-Zeichen, eingeleitet durch das Zeichen T und abgeschlossen durch das Zeichen LF (Line-Feed, ASCII-Code 0Ah). Das Format ist:

T:jj:mm:tt:ww:hh:mm:ss<CR><LF>

Die *kursiv* gedruckten Buchstaben werden durch Ziffern ersetzt, die restlichen Zeichen sind Bestandteil des Zeittelegramms. Die einzelnen Zeichengruppen haben folgende Bedeutung:

T Startzeichen wird mit der Genauigkeit eines Bits zum Sekundenwechsel gesendet

jj:mm:tt das Datum:

jj Jahr ohne Jahrhundert (00..99) mm Monat (01..12) tt Monatstag (01..31)

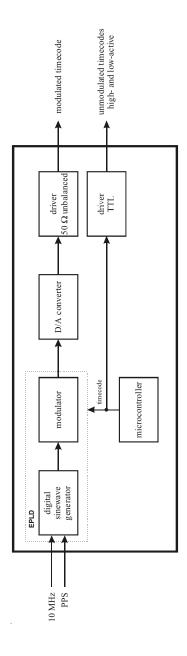
ww der Wochentag (01..07, 01 = Montag)

hh:mm:ss die Zeit:

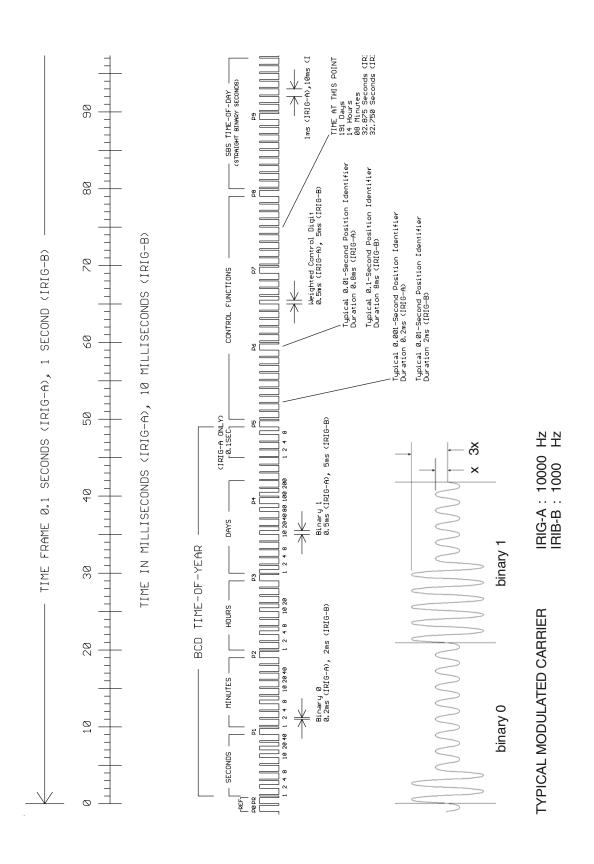
hh Stunden (00..23) *mm* Minuten (00..59)

ss Sekunden (00..59, oder 60 wenn Schaltsekunde)

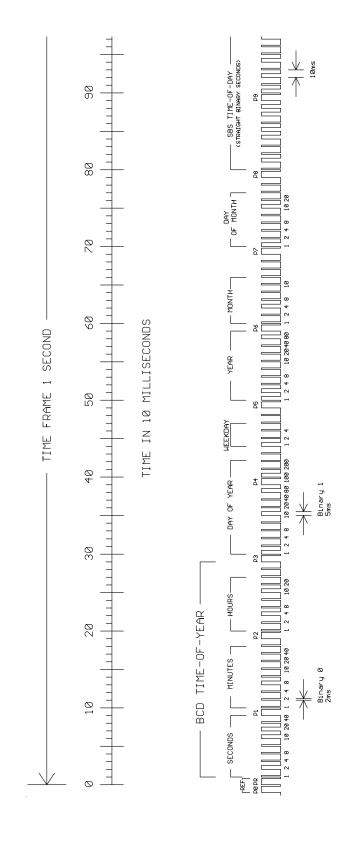
<CR> Carriage Return, ASCII Code 0Dh


<LF> Line Feed, ASCII Code 0Ah

Time code (optional)


Funktionsweise

Die Europakarte GPS170 mit Timcode Ausgang wurde speziel zur Erzeugung von IRIG, AFNOR und IEEE1344 Zeitcodes erweitert. Neben dem digital erzeugten amplitudenmodulierten Code wird parallel auch der unmodulierte DC-Pegel IRIG bzw. AFNOR Code bereitgestellt.


Blockschaltbild Generierung des Time codes

IRIG Standardformat

AFNOR Standardformat

Belegung des CF Segmentes beim IEEE1344 Code

Bit Nr.	Bedeutung	Beschreibung	
49	Position Identifier P5		
50	Year BCD encoded 1		
51	Year BCD encoded 2	unteres Nibble des BCD codierten Jahres	
52	Year BCD encoded 4		
53	Year BCD encoded 8		
54	empty, always zero		
55	Year BCD encoded 10		
56	Year BCD encoded 20		
57	Year BCD encoded 40	oberes Nibble des BCD codierten Jahres	
58	Year BCD encoded 80	1	
59	Position Identifier P6		
60	LSP - Leap Second Pending	bis zu 59s vor Schaltsekunde gesetzt	
61	LS - Leap Second	0 = LS einfügen, 1 = LS löschen ^{1.)}	
62	DSP - Daylight Saving Pending	bis zu 59s vor SZ/WZ Umschaltung gesetzt	
63	DST - Daylight Saving Time	gesetzt während Sommerzeit	
64	Timezone Offset Sign	Vorzeichen des Zeitzonenoffsets 0 = '+', 1 = '	
65	TZ Offset binary encoded 1	Offset der IRIG Zeit gegenüber UTC IRIG Zeit PLUS Zeitzonenoffset (einschließlic Vorzeichen) ergibt immer UTC	
66	TZ Offset binary encoded 2		
67	TZ Offset binary encoded 4		
68	TZ Offset binary encoded 8		
69	Position Identifier P7		
70	TZ Offset 0.5 hour	gesetzt bei zusätzlichem halbstündigen Offset	
71	TFOM Time figure of merit		
72	TFOM Time figure of merit	TFOM gibt den ungefähren Fehler der Zeitquelle an ^{2.)}	
73	TFOM Time figure of merit	0x00 = Uhr synchron 0x0F = Uhr im Freilauf	
74	TFOM Time figure of merit		
75	PARITY	Parität aller vorangegangenen Bits	

 $^{^{1.)}}$ von der Firmware werden nur eingefügte Schaltsekunden (59->60->00) unterstützt !

^{2.)} TFOM wird auf 0 gesetzt wenn die Uhr nach dem Einschalten einmal synchronisieren konnte, andere Codierungen werden von der Firmware nicht unterstüzt. s.a. Auswahl des generierten Zeitcodes.

Generierte Zeitcodes

Das Board verfügt neben dem amplitudenmodulierten Sinuskanal auch über einen unmodulierten TTL Ausgang zur Ausgabe des pulsweitenmodulierten DC-Signals, so daß sechs unterschiedliche Zeitcodes verfügbar sind:

a)	B002:	100pps, PWM DC Signal, kein Träger
		BCD time-of-year

b) B122: 100pps, AM Sinussignal, 1 kHz Trägerfrequenz BCD time-of-year

c) B003: 100pps, PWM DC Signal, kein Träger BCD time-of-year, SBS time-of-day

d) B123: 100pps, AM Sinussignal, 1 kHz Trägerfrequenz BCD time-of-year, SBS time-of-day

e) B006: 100pps, PWM DC Signal, kein Träger BCD time of year, year number (0...99)

f) B126: 100pps, AM Sinussignal, 1 kHz Trägerfrequenz BCD time of year, year number (0...99)

g) B007: 100pps, PWM DC Signal, kein Träger BCD time of year, SBS time of day, year number (0...99)

h) B127: 100pps, AM Sinussignal, 1 kHz Trägerfrequenz BCD time of year, SBS time of day, year number (0...99)

i) AFNOR: Code lt. NFS-87500, 100pps, AM Sinussignal, 1kHz Träger, BCD time-of-year, vollständiges Datum, SBS time-of-day, Ausgangspegel angepasst.

j) IEEE1344: Code. lt. IEEE1344-1995, 100pps, AM Sinussignal, 1kHz Träger, BCD time-of-year, SBS time-of-day, IEEE1344 Erweiterungen für Datum, Zeitzone, Sommer/Winterzeit und Schaltsekunde im Control Funktions Segment (CF) s.a. Tabelle Belegung des CF-Segmentes beim IEEE1344 Code

Auswahl des generierten Zeitcodes

Der generierte Zeitcode kann über das Menue Setup IRIG Settings oder das GPS Monitorprogramm ausgewählt werden. Die DC-Level Shift Codes B00x und modulierten Codes mit Sinusträger B12x werden immer parallel erzeugt und sind an verschiedenen Pins der VG64 Steckerleise abnehmbar. Wird zum Beispiel der Code

B122 gewählt, so ist parallel auch der Code B002 verfügbar. Gleiches gilt für die Codes IEEE1344 und AFNOR NFS 87-500.

Das TFOM Segment des IEEE1344 Codes wird in Abhängigkeit des im Zeitstring gesendeten 'already sync'ed' Zeichens ('#') gesetzt. Dieses Zeichen wird immer dann gesetzt wenn die Uhr nach dem Einschalten noch *nicht* synchronisiert hat. Für das 'time figure of merit' (TFOM) Segment des IEEE1344 Codes gilt:

Uhr hat nach dem Einschalten einmal synchronisiert : TFOM = 0000Uhr hat nach dem Einschalten noch <u>nicht</u> synchronisiert : TFOM = 1111

Zu Testzwecken lässt sich die Ausgabe des TFOM Segmentes im IEEE1344 Code abschalten. Das Segment wird dann immer auf 0000 gesetzt.

Ausgänge

Die GPS170-ZTC stellt modulierte und unmodulierte Ausgänge zur Verfügung. Das Format der IRIG-Ausgänge kann den Abbildungen "IRIG-B" und "AFNOR Standardformat" entnommen werden.

AM-Ausgang

Der amplitudenmodullierte Sinusträger steht an der VG-Leiste Pin 14a zur Verfügung. Die Trägerfrequenz beträgt 1kHz (IRIG-B). Das Signal hat eine Amplitude von $3V_{ss}$ (MARK) bzw. $1V_{ss}$ (SPACE) an $50~\Omega$. Über die Anzahl der MARK-Amplituden bei zehn Trägerschwingungen erfolgt die Codierung. Dabei gelten folgende Vereinbarungen:

a) binär "0" : 2 MARK-Amplituden, 8 SPACE-Amplituden
b) binär "1" : 5 MARK-Amplituden, 5 SPACE-Amplituden
c) position-identifier : 8 MARK-Amplituden, 2 SPACE-Amplituden

PWM-Ausgänge

Das in den Abbildungen "IRIG-" und "AFNOR Standardformat" dargestellte pulsweitenmodullierte DC-Signal wird immer parallel zum Sinussignal generiert und steht an der VG-Leiste Pin 13a als TTL-Pegel verfügbar.

Technische Daten

Ausgänge: Unsymmetrisches AM-Sinussignal:

 $3V_{ss}$ (MARK), $1V_{ss}$ (SPACE) an 50 Ω

PWM-Signal: TTL, high- und low-aktiv

Signale an der Steckerleiste Baugruppe GPS170

Signalname Anschluß		Beschreibung	
GND	32a+c Massepotential		
VCC in (+5V)	1a+c	+5 V Versorgung	
VCC in (+12V)	2a+c	+12 V Versorgung	
VCC in (+5V)	3a+c	+5 V Versorgung (TCXO / OCXO-MQ)	
P_SEC out 6c		Impuls zum Sekundenwechsel, TTL-Pegel,	
		aktiv high, Impulslänge 200 msec	
P_MIN out	8c	Impuls zum Minutenwechsel, TTL-Pegel,	
		aktiv high, Impulslänge 200 msec	
/RESET in/out	9c	RESET-Anschluß, Open Drain mit Pullup auf +5V	
Prog. Pulse out	10c-12c	programierbare Impulse, TTL-Pegel	
100 kHz out	10a	100 kHz Frequenzausgang, TTL-Pegel	
1 MHz out	11a	1 MHz Frequenzausgang, TTL-Pegel	
10 MHz out	12a	10 MHz Frequenzausgang, TTL-Pegel	
TIME CODE DC	13a	Time Code unmoduliert, TTL-Pegel	
TIME CODE AM	14a	Time Code moduliert, 3Vss an 50 Ohm	
DCF_MARK out	17c	DCF77-kompatible Sekundenmarken, TTL-Pegel,	
		aktiv high, Impulslänge 100/200 msec	
TIME_SYN	19c	TTL-Ausgang, HIGH-Pegel, wenn Synchronisation	
		erfolgt ist,	
		LOW-Pegel nach Reset oder im Fehlerfall (z.B.	
		Antenne defekt)	
F_SYNTH	21c	Synthesizer-Frequenz, TTL-Pegel	
F_SYNTH_OD 22c S		Synthesizer-Frequenz, Open Drain	
		schaltet bis max. 150mA gegen GND	
F_SYNTH_SIN 23c		Synthesizer-Frequenz, Sinus 1.5 Veff	
CAPx	27c, 28c	Time Capture Eingänge (TTL), Zeitübernahme mit	
		fallender Impulsflanke	
COMx TxD out		COMx RS-232 Ausgang	
COMx RxD in		COMx RS-232 Eingang	
SDA, SCL, SCL_E	EN	serieller Bus für zukünftige Erweiterungen	
(reserved)		reserviert, diese Anschlüsse nicht beschalten	

Steckerbelegung Baugruppe GPS170

	a	c	
1	VCC in (+5V)	VCC in (+5V)	
2	VCC in (+12V)	VCC in (+12V)	
3	VDD in (TCXO/OCXO)	VDD in (TCXO/OCXO)	
4	(reserved, FreqAdjust out)	(reserved in-3) PPS out	
5	FIXED FREQUENCY out		
6	(reserved in-1)		
7	(reserved in-2)		
8	(reserved, 10 MHz_OSC in)		
9	10 MHz SINE out (OCXO MQ/HQ)		
10	100 kHz out		
11	1 MHz out		
12	10 MHz out		
13			
14	TIME CODE AM out		
15	COM2 RxD in		
16	COM2 TxD out	(reserved, P7.5)	
17	COM3 RxD in	OM3 TxD out (reserved, Vref/TxD2 TTL) TIME_SYN out (reserved, P7.6) F_SYNTH out F_SYNTH_OD out F_SYNTH_SIN out COM1 TxD out COM0 TxD out	
18	COM3 TxD out		
19	GND		
20	GND		
21	GND		
22	GND		
23	GND		
24	GND		
25	GND		
26	GND		
27	GND		
28	GND	CAP0 in	
29	GND	COM1 RxD in	
30	GND	COM0 RxD in	
31	GND	GND	
32	GND	GND	
	NEW SIGNALS compared to GPS16	7 (reserved, not imlemented yet)	

Steckerleiste nach DIN 41612, Typ C 64, Reihen a + c

Kurzübersicht GPS170LCD-MP Bedienung

÷	_ NI	EXT
	GPS: NORMAL OPERATION Mon, DD.MM.YYYYY UTC 12:00:00	Meinberg GPS170 S/N: 0290100xxx70 REV:1.xx LCD_2
	RECEIVER POSITION Lat:51°59'06''N Lon: 9°13'30''E Al:110m	RECEIVER POSITION Lat: 51.9851° Lon: 9.2253° Al: 110m
		RECEIVER POSITION x: 3885422m y: 631059m z: 5001868m
MENU	SATELLITE CONSTELLATION In view: 9 Good: 8 Sel: 3 19 26 13	DILUTION OF PRECISION PDOP: 4.33 TDOP: 2.88 GDOP: 5.20
¥	SATELITE 4 INFO: El: 17° AZ: 204° Dist: 24000 km Dopp: -3.550 kHz	
	USER CAP0 UTC DD.MM.YYYY 12:00:00.1234567	USER CAP1 NA
	CLE	R/ACK
	SETUP: ENABLE OUTPUTS	Serial: if sync Pulses: if sync Synth: if sync
	SETUP: TIME ZONE	DAYLIGHT SAVING OFF: !MEZ ! +01:00h DAYLIGHT SAVING ON : !MESZ ! +02:00h
ХŢ	SETUP: DAYLIGHT SAV ON	DAYLIGHT SAV ON Date: 25.03.**** Day Of Week: SUN Time: 2:00:00
NEXT	SETUP: DAYLIGHT SAV OFF	DAYLIGHT SAV OFF Date: 25.10.**** Day Of Week: SUN Time: 3:00:00
	SETUP: SERIAL PORT PARMS	COM0: 19200 8N1 COM1: 9600 8N1 COM2: 9600 7E2 COM3: 9600 7E2
	SETUP: SER. STRING TYPE	COM0: Meinbg Std COM1: Capture
	SETUP: SER. STRING MODE	COM0: Per Second COM1: Cap.Events COM2: Per Second COM3: Per Second
	SETUP: INITIAL POSITION	INITIAL POSITION Lat:51°59'06''N Lon: 9°13'30''E Al:110m
	SETUP: INITIAL TIME	SET INITIAL TIME MESZ Date: DD.MM.YYYY Time: 12:00:00
	SETUP: INIT USER PARMS	Are you sure ? Press INC => YES MENU => NO
	SETUP: INIT GPS PARMS	Are you sure ? Press INC => YES MENU => NO
	SETUP: FORCE BOOT MODE	Are you sure ? Press INC => YES MENU => NO
	SETUP: ANTENNA CABLE	SETUP: ANTENNA CABLE LENGTH: 0020 m

Technischer Anhang

Technische Daten GPS170LCD-MP

GEHÄUSE: 19''-Einschub, MULTIPAC Schroff

Frontplatte 1 HE / 84 TE (43,6 mm hoch / 426,4 mm breit)

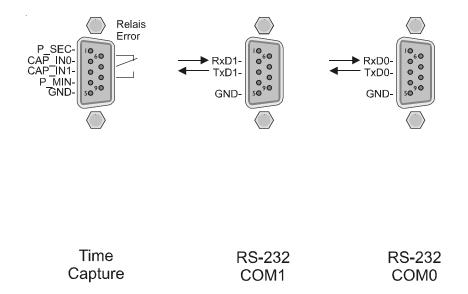
SCHUTZART: IP20

ABMESSUNGEN: 482,6 mm x 43,7 mm x 285 mm (B x H x T)

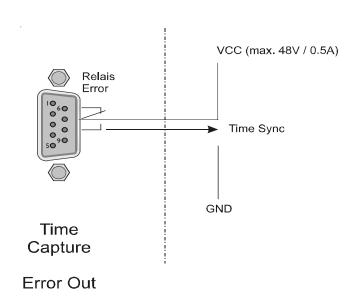
Rückwandanschlüsse

Bezeichnung	Steckverbinder	Art	Kabel
COM0 COM1	9pol. SUB-D 9pol. SUB-D	RS232 RS232	Datenleitung geschirmt Datenleitung geschirmt
Time Capture Error	9pol. SUB-D zus. mit Time Capt.	TTL Eingang Relais (Wechsler)	geschirmt
Antenne	N-Norm-Buchse	10 MHz und 35.4 M	Hz Koax doppelt geschirmt
Netz	Kaltger. Stecker	100 240V	Kaltgeräteanschlußkabel

CE-Kennzeichnung



Dieses Gerät erfüllt die Anforderungen 89/336/EWG "Elektromagnetische Verträglichkeit". Hierfür trägt das Gerät die CE-Kennzeichnung.


Rückansicht GPS170LCD-MP

Belegung der SUB-D-Buchsen

Anschlußschema Error Relais (Time Sync)

Technische Daten Netzgerät T-60B

EINGANGS-

SPANNUNG: 85 ... 264V AC, 47... 63Hz, 1A/230V, 2A/115V

SICHERUNG: elektronisch

AUSGANGSSTROM-

BEGENZUNG: 105 - 150% I_{out nom}

AUSGANGS-

SPANNUNGEN: $V_{out}1$: 5.05V / 5A

 $V_{out}2: +12V / 2.5A$ $V_{out}3: -12V / 0.5A$

GESAMT-

BELASTUNG: max. 61 Watt

STECK-

VERBINDER: Schraubklemmenleiste

BAUFORM: Metallgehäuse : 159mm x 97mm x 38mm (LxBxH)

TEMPERATUR-

BEREICH: -10°C ... +60°C

LUFT-

FEUCHTIGKEIT: 90% max.

Das Programm GPSMON32

Das Programm **GPSMON32** dient der Programmierung und Überwachung aller für den Benutzer wesentlichen Funktionen von **Meinberg GPS-Funkuhren**. Die Software ist auf den Betriebssystemen Win9x, Win2000, WinXP und WinNT lauffähig. Zur Installation muß nur das Programm Setup.exe auf der mitgelieferten Diskette gestartet und im weiteren den Anweisungen des Installationsprogramms gefolgt werden.

Eine Verbindung zwischen GPS und Programm kann entweder seriell oder, wenn die Funkuhr mit einem Netzwerkanschluss (LANXPT oder SCU-XPT) versehen ist, über eine TCP/IP Verbindung hergestellt werden. Die Verbindungsart wird im Menü, Connection->Settings' mit den Schaltflächen 'serial' und 'Network' ausgewählt.

Serielle Verbindung

Um eine serielle Verbindung zwischen PC und GPS-Empfänger aufzubauen, muß zunächst eine freie serielle Schnittstelle des PCs mit der seriellen Schnittstelle COM0 der GPS verbunden werden. Der vom Programm zu verwendende Com-Port wird über das Menü 'Connection' im Unterpunkt 'PC-Comport' eingestellt. Es muß darauf geachtet werden, daß die serielle Schnittstelle während der Ausführung von GPS-MON32 nicht von einem anderen Programm verwendet wird. Das Programm verwendet für die Kommunikation mit dem GPS-Empfänger standardmäßig die Übertragungsrate 19200 Baud und das Datenformat 8N1. Abweichend hiervon können die Übertragsrate 9600 Baud und die Datenformate 8E1 oder 8N2 verwendet werden. Durch Anklicken der Schaltfläche 'OK' werden die Einstellungen wirksam und in einer Setup Datei gespeichert, so daß das Programm beim nächsten Aufruf mit den gleichen Einstellungen gestartet wird.

Ist die Schnittstelle COM 0 der Funkuhr nicht in gleicher Weise wie der PC-Comport konfiguriert, wird zunächst keine Kommunikation zwischen Programm und GPS zustande kommen. Dies ist z.B. daran zu erkennen, daß auch einige Sekunden nach dem Start von GPSMON32 das Uhrzeitfeld (TIME) im Hauptfenster des Programms nicht aktualisiert wird. Liegt dieser Fall vor, muß die Verbindung zur GPS 'erzwungen' werden. Hierzu muß im Menü 'Connection' der Punkt 'Enforce Connection' aufgerufen werden. Im erscheinenden Fenster 'Force Gps Connection' muß dann nur noch 'Start' angewählt werden. Einige Software Varianten der GPS170 unterstützen diese Art des Verbindungsaufbaus nicht. In diesem Fall muß die Einstellung der seriellen Parameter manuell an der GPS vorgenommen werden.

Netzwerkverbindung

Sämtliche für die Netzwerkverbindung wesentlichen Einstellungen werden im Menue ,Connection->Settings' vorgenommen.

Um eine Netzwerkverbindung zwischen Funkuhr und dem Programm GPMON32 aufzubauen muß zunächst in der Auswahlbox 'mode' die Betriebsart 'network' ausgewählt werden. Außerdem muß die IP-Adresse der Funkuhr im Feld 'IP-Address' eingegeben werden. Ist die IP-Adresse der Funkuhr nicht bekannt, oder sollen alle im Netzwerk erreichbaren Uhren aufgelistet werden, so kann durch Anklicken der 'Find'-Schaltfläche im Netzwerk danach gesucht werden.

Der Zugang zu Funkuhren mit Netzwerkanschluss ist immer Passwortgeschützt

Weitere Informationen zur Netzwerkverbindung finden sich der online Hilfedatei des Programms GPSMON32.

Starten der online Hilfedatei

Die online Dokumentation des Programms kann durch Anklicken des Menüpuktes Help im Menü Help gestartet werden. Außerdem kann in allen Fenstern des Programms durch Drücken von F1 ein direkter Zugriff auf die entsprechenden Hilfethemen vorgenommen werden. Die Sprache der Hilfedatei kann mit den Menüpunkten Deutsch/English im Menü Help ausgewählt werden.

Diskette mit Windows Software GPSMON32

